1
|
Wuttke B, Ekat K, Chabanovska O, Jackszis M, Springer A, Vasudevan P, Kreikemeyer B, Lang H. Preparation and In Vitro Characterization of Lactococcus lactis-Loaded Alginate Particles as a Promising Delivery Tool for Periodontal Probiotic Therapy. J Funct Biomater 2024; 15:129. [PMID: 38786639 PMCID: PMC11121860 DOI: 10.3390/jfb15050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Probiotic microorganisms are used in a variety of food supplements and medical formulations to promote human health. In periodontal therapy, probiotics are mainly used in the form of gels, tablets or rinses that often tend to leak from the periodontal pocket, resulting in a strongly reduced therapeutic effect. In this pilot in vitro study, we present biodegradable alginate-based particles as an alternative, highly efficient system for a periodontal delivery of probiotic bacteria to the inflammation site. For this purpose, Lactococcus (L.) lactis was encapsulated using a standardized pump-controlled extrusion-dripping method. Time-dependent bacterial release in artificial saliva was investigated over 9 days. The effect of freeze drying was explored to ensure long-term storage of L. lactis-loaded particles. Additionally, the particles were bound to dentin surface using approved bioadhesives and subjected to shear stress in a hydrodynamic flow chamber that mimics the oral cavity in vitro. Thus, round particles within the range of 0.80-1.75 mm in radius could be produced, whereby the diameter of the dripping tip had the most significant impact on the size. Although both small and large particles demonstrated a similar release trend of L. lactis, the release rate was significantly higher in the former. Following lyophilization, particles could restore their original shape within 4 h in artificial saliva; thereby, the bacterial viability was not affected. The attachment strength to dentin intensified by an adhesive could resist forces between 10 and 25 N/m2. Full degradation of the particles was observed after 20 days in artificial saliva. Therefore, alginate particles display a valuable probiotic carrier for periodontal applications that have several crucial advantages over existing preparations: a highly stable form, prolonged continuous release of therapeutic bacteria, precise manufacturing according to required dimensions at the application site, strong attachment to the tooth with low risk of dislocation, high biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Bettina Wuttke
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Oleksandra Chabanovska
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
2
|
Ajith S, Ghosh J, Shet D, ShreeVidhya S, Punith BD, Elangovan AV. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express 2019; 9:3. [PMID: 30610388 PMCID: PMC6320329 DOI: 10.1186/s13568-018-0725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/24/2018] [Indexed: 11/23/2022] Open
Abstract
Phytase is a phosphatase enzyme widely used as feed additive to release inorganic phosphorus from plant phytate and enhance its uptake in monogastric animals. Although engineered fungal phytases are used most, a natural enzyme gives opportunity to understand novel properties, if any. In the current study, a novel fungal strain, Aspergillus foetidus MTCC 11682 was immobilized on poly urethane cubes and used for phytase production, purification and molecular characterization. Phytase produced by this method was partially purified by ammonium sulphate precipitation and Sephacryl S-200HR gel filtration to 23.4-fold (compared to crude extract) with recovery of 13% protein. Electrophoresis analysis revealed that phytase has molecular weight of 90.5 kDa on non-reducing and 129.6 kDa on reducing SDS-PAGE. The purified phytase exhibited a wider pH and temperature stability. Analysis of the cloned sequence showed that the gene has 1176 bp that encodes for a peptide of 391 amino acids of the core catalytic region. It was also found that phytase from A. foetidus has a sequence identity of 99% with the phytase gene of other Aspergillus species at nucleotide level and 100% at protein level in A. niger, A. awamori, A. oryzae. In silico analysis of sequence identified the presence of two consecutive and one non-consecutive intra chain disulfide bonds in the phytase. This probably contributed to the differential migration of phytase on reducing and non-reducing SDS-PAGE. There are predicted 11 O-glycosylation sites and 8 N-glycosylation sites, possibly contributed to an enhanced stability of enzyme produced by this organism. This study opened up a new horizon for exploring the novel properties of phytase for other applications.
Collapse
|
3
|
Gatenholm P, Michálek J, Vacík J. Synthesis and characterization of highly wettable hydrogel coatings for immobilization of marine bacteria. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19961090112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Mollaei M, Abdollahpour S, Atashgahi S, Abbasi H, Masoomi F, Rad I, Lotfi AS, Zahiri HS, Vali H, Noghabi KA. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:284-292. [PMID: 19883975 DOI: 10.1016/j.jhazmat.2009.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/15/2009] [Accepted: 10/01/2009] [Indexed: 05/28/2023]
Abstract
In this work, Pseudomonas sp. SA01 cells were immobilized in a series of singular and hybrid immobilization techniques to achieve enhanced phenol removal. The singular immobilization strategies consisted of various concentrations of alginate (2-4%) and pectin (3-5%), while the hybrid strategies incorporated polyvinyl alcohol (PVA)-alginate and glycerol-alginate beads and alginate-chitosan-alginate (ACA) capsules. Immobilization protected cells against phenol and resulted in remarkable reduction (65%) in degradation time by cells immobilized in either alginate (3%) beads, in a hybrid PVA-alginate beads, or in ACA capsules compared to freely suspended cells. Cells immobilized in PVA-alginate and ACA provided the best performance in experiments using elevated phenol concentrations, up to 2000 mg/L, with complete degradation of 2000 mg/L phenol after 100 and 110 h, respectively. Electron microscopy examination indicated that cell loading capacity was increased in PVA-alginate hybrid beads through reduced cell leakage, resulting in higher activity of PVA-alginate hybrid beads compared to all other immobilization methods.
Collapse
Affiliation(s)
- Monir Mollaei
- National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gòdia F, Casas C, Solà Ç. Mathematical modelization of a packed-bed reactor performance with immobilized yeast for ethanol fermentation. Biotechnol Bioeng 2004; 30:836-43. [DOI: 10.1002/bit.260300705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Simon H, Bader J, Günther H, Neumann S, Thanos J. Chiral Compounds Synthesized by Biocatalytic Reductions [New Synthetic Methods (51)]. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/anie.198505391] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Abstract
Permeabilized microbial cells can be used as a crude enzyme preparation for industrial applications. Immobilization and process recycling can compensate for the low specific activity of this preparation. For biomass immobilization, the common support is alginate beads; however, its low surface area and the low biomass concentration limit the activity. We here describe a biocatalyst consisting of a paste of permeabilized Kluyveromyces lactis cells gelled with manganese alginate over a semicircular stainless steel screen. A ratio of wet permeabilized biomass to alginate of 50:4 (wt/wt) resulted in a paste with maximum immobilized beta-galactosidase activity and maximum gel biomass retention. The biocatalysts retained activity better when stored in milk at 4 degrees C than in 50% glycerol. The unused biocatalysts stored in milk did not lose activity after 50 d. However, repeated use of the same biocatalyst 40 times resulted in almost 50% loss of activity. A bioreactor design with two different conditions of operation were tested for milk lactose hydrolysis using this biocatalyst. The bioreactor was operated at 40 degrees C as packed bed or with recirculation, similar to a continuous stirred tank reactor. The continuous system with recirculation resulted in 82.9% lactose hydrolysis at a residence time of 285.5 min (flow of 2.0 ml/min), indicating the potential of this system for processing low lactose milk, or even in processing other substrates, using an appropriate biocatalyst.
Collapse
Affiliation(s)
- A N Genari
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36571-000, MG-Brazil
| | | | | |
Collapse
|
8
|
Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol. Appl Environ Microbiol 1998; 64:4260-3. [PMID: 9797274 PMCID: PMC106636 DOI: 10.1128/aem.64.11.4260-4263.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.
Collapse
|
9
|
Stable support materials for the immobilization of viable cells. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0921-0423(96)80008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Survival of lac-lux marked Pseudomonas aeruginosa UG2Lr cells encapsulated in κ-carrageenan and alginate. J Microbiol Methods 1995. [DOI: 10.1016/0167-7012(95)00038-m] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Poly(carbamoylsulfonate), a material for immobilization: Synthesis, diffusion- and mechanical properties. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf00156335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Vorlop KD, Muscat A, Beyersdorf J. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02447818] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Ahmad S, Garg SK, Johri BN. Biotransformation of sterols: Selective cleavage of the side chain. Biotechnol Adv 1992; 10:1-67. [PMID: 14540800 DOI: 10.1016/0734-9750(92)91351-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review elaborates on the recent development of microbial sterol biotransformation systems. Particular emphasis is laid on the new enzymatic approach investigating the cleavage of sterol side chain. New developments in the area of immobilized cell system and use of organic media along with recent reviews on side chain cleavage are discussed.
Collapse
Affiliation(s)
- S Ahmad
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | | | | |
Collapse
|
14
|
Abstract
Immobilized cells cover a wide area of applications and are essential components of many biotechnological processes. In general it can be distinguished between two immobilization methods: (1) entrapment into polymers and (2) natural adsorption onto porous and inert support materials. The immobilization by adsorption is discussed by the following criteria: biomass loading, strength of adhesion, enzymatic stability/specific activity of the biocatalyst, effectivity/reaction engineering and operational stability.
Collapse
Affiliation(s)
- J Klein
- Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, F.R.G
| | | |
Collapse
|
15
|
Nir R, Lamed R, Gueta L, Sahar E. Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl Environ Microbiol 1990; 56:2870-5. [PMID: 2275535 PMCID: PMC184857 DOI: 10.1128/aem.56.9.2870-2875.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A method is presented for encapsulating single microbial cells in small spheres suitable for analysis and sorting by flow cytometry. The entrapped cells are able to multiply and form colonies contained within their respective microspheres. The system is based on ejecting the cells suspended in a gellable liquid through an orifice vibrating at ultrasonic frequencies, thus shearing the cell-containing jet into uniform droplets. When low-melting-temperature agarose was used, the droplets could be gelled into solid spheres during flight by appropriately directed colling air streams. This gelling was accompanied by significant dehydration, resulting in a twofold decrease in bead diameter and a corresponding increase in agarose concentration. Nevertheless, the microbeads obtained were highly uniform and had diameters which could be precisely controlled in the range of 10 to 40 microns. A variety of bacterial and yeast species were entrapped in agarose beads by using this system. In all cases the cells were able to develop into microcolonies containing as many as several hundred cells. This system enables one to apply the powerful method of flow cytometry to the analysis and sorting of whole microbial colonies. Potential applications of this technology in various areas of microbiology are considered.
Collapse
Affiliation(s)
- R Nir
- Department of Biotechnology, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
16
|
Svoboda A, Ouředníček P. Yeast protoplasts immobilized in alginate: Cell wall regeneration and reversion to cells. Curr Microbiol 1990. [DOI: 10.1007/bf02091915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Daly MM, Knorr D. Chitosan-Alginate Complex Coacervate Capsules: Effects of Calcium Chloride, Plasticizers, and Polyelectrolytes on Mechanical Stability. Biotechnol Prog 1988. [DOI: 10.1002/btpr.5420040205] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
|
19
|
Preparation of stable alginate gel beads in electrolyte solutions using Ba2+ and Sr2+. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01876161] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Affiliation(s)
- C Akin
- Amoco Corporation, Amoco Research Center, Naperville, Illinois 60566
| |
Collapse
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
Abstract
Apart from the broadly used diosgenin and some further natural compounds sterols gained an increasing importance as raw material for the synthesis of steroid drugs. Parallel to the elucidation of the pathways of the enzymatic degradation of sterols technical processes were developed for a specific degradation of the side-chain to useful primary products. A review is given on the present state of this field and the trends to further improvements.
Collapse
|