1
|
Yamazaki K, Kubara K, Ishii S, Kondo K, Suzuki Y, Miyazaki T, Mitsuhashi K, Ito M, Tsukahara K. Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:210-226. [PMID: 37520683 PMCID: PMC10372164 DOI: 10.1016/j.omtn.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.
Collapse
Affiliation(s)
- Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Satoko Ishii
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kaoru Mitsuhashi
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Masashi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kappei Tsukahara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
2
|
Abstract
Recent findings in colon cancer cells indicate that inhibition of the mitochondrial H+-adenosine triphosphate (ATP) synthase by the ATPase inhibitory factor 1 (IF1) promotes aerobic glycolysis and a reactive oxygen species (ROS)-mediated signal that enhances proliferation and cell survival. Herein, we have studied the expression, biological relevance, mechanism of regulation and potential clinical impact of IF1 in some prevalent human carcinomas. We show that IF1 is highly overexpressed in most (>90%) of the colon (n=64), lung (n=30), breast (n=129) and ovarian (n=10) carcinomas studied as assessed by different approaches in independent cohorts of cancer patients. The expression of IF1 in the corresponding normal tissues is negligible. By contrast, the endometrium, stomach and kidney show high expression of IF1 in the normal tissue revealing subtle differences by carcinogenesis. The overexpression of IF1 also promotes the activation of aerobic glycolysis and a concurrent ROS signal in mitochondria of the lung, breast and ovarian cancer cells mimicking the activity of oligomycin. IF1-mediated ROS signaling activates cell-type specific adaptive responses aimed at preventing death in these cell lines. Remarkably, regulation of IF1 expression in the colon, lung, breast and ovarian carcinomas is exerted at post-transcriptional levels. We demonstrate that IF1 is a short-lived protein (t1/2 ∼100 min) strongly implicating translation and/or protein stabilization as main drivers of metabolic reprogramming and cell survival in these human cancers. Analysis of tumor expression of IF1 in cohorts of breast and colon cancer patients revealed its relevance as a predictive marker for clinical outcome, emphasizing the high potential of IF1 as therapeutic target.
Collapse
|
3
|
Johnson M, Vang P, Filipovits J, Gardner D. Maternal enzyme masks the phenotype of mouse embryos lacking dihydrolipoamide dehydrogenase. Reprod Biomed Online 2009; 19:79-88. [PMID: 19573295 DOI: 10.1016/s1472-6483(10)60050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During early embryogenesis, the phenotype reflecting the embryonic genotype emerges only as maternal proteins are replaced by embryonically encoded forms, a process known as the maternal-to-embryonic transition (MET). Little is understood about MET for most proteins. This study investigates how complete deficiency of the murine dihydrolipoamide dehydrogenase gene (Dld), a gene that encodes an enzyme of mitochondrial energy metabolism, affects the phenotype of the early embryo and how the MET of the DLD protein affects the phenotype. Dld-deficient (-/-) embryos were found to develop similarly to wild-type (+/+) or heterozygous (+/-) embryos throughout the preimplantation period. These three genotypic classes also have comparable rates of glucose uptake (4.9-5.0 pmoles/embryo/h) and lactate production (0.97-1.0 pmoles/embryo/h). Dld-deficient embryos at the end of the preimplantation stage have 44% of DLD enzyme present in oocytes, a proportion similar to that found in +/+ or +/- embryos. This study demonstrates that Dld-deficient preimplantation embryos are phenotypically normal, as the MET for the DLD enzyme is only partially complete by the end of the preimplantation period. These findings have implications for phenotype- or enzyme-based approaches to identify mutations in Dld and other genes that encode proteins with similar MET kinetic profiles.
Collapse
Affiliation(s)
- Mark Johnson
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., 6422 Med Sci I, Ann Arbor, MI 48109-0617, USA.
| | | | | | | |
Collapse
|
4
|
Knecht E, Aguado C, Cárcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM, Sáez R. Intracellular protein degradation in mammalian cells: recent developments. Cell Mol Life Sci 2009; 66:2427-43. [PMID: 19399586 PMCID: PMC11115841 DOI: 10.1007/s00018-009-0030-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/16/2022]
Abstract
In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes.
Collapse
Affiliation(s)
- Erwin Knecht
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA (NEW YORK, N.Y.) 2008; 14:2407-2416. [PMID: 18796578 PMCID: PMC2578859 DOI: 10.1261/rna.1208808] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
The A3243G mutation in the human mitochondrial tRNA(Leu(UUR)) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNA(Leu(UUR)) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNA(Leu(UUR)) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
6
|
Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 2008; 28:7514-31. [PMID: 18852288 DOI: 10.1128/mcb.00946-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.
Collapse
|
7
|
Mrácek T, Jesina P, Kriváková P, Bolehovská R, Cervinková Z, Drahota Z, Houstek J. Time-course of hormonal induction of mitochondrial glycerophosphate dehydrogenase biogenesis in rat liver. Biochim Biophys Acta Gen Subj 2005; 1726:217-23. [PMID: 16039782 DOI: 10.1016/j.bbagen.2005.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/09/2005] [Accepted: 06/17/2005] [Indexed: 11/18/2022]
Abstract
Thyroid hormones are important regulators of mitochondrial metabolism. Due to their complex mechanism of action, the timescale of different responses varies from minutes to days. In this work, we studied selective T3 induction of the inner mitochondrial membrane enzyme-glycerophosphate dehydrogenase (mGPDH) in liver of euthyroid rats. We correlated the kinetics of the T3 level in blood, the mRNA level in liver, the activity and amount of mGPDH in liver mitochondria after a single dose of T3. The T3 level reached maximum after 1 h (80 nmol/l) and subsequently rapidly decreased. mGPDH mRNA increased also relatively fast, reaching a maximum after 12 h and fell to the control level after 72 h. An increase of mGPDH activity could be already found after 6 h and reached a maximum after 24 h in accordance with the increase in mGPDH content (2.4-fold vs. 2.7-fold induction). After 72 h, the mGPDH activity showed a significant 30% decrease. When the rats received three subsequent doses of T3, the increase of mGPDH activity was 2-fold higher than after a single T3 dose. The results demonstrate that mGPDH displays rapid induction as well as decay upon disappearance of a hormonal stimulus, indicating a rather short half-life of this inner mitochondrial membrane enzyme.
Collapse
Affiliation(s)
- T Mrácek
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In cultured hepatocytes the turnover of several mitochondrial matrix proteins (e.g. acetyl-CoA acetyltransferase) appears to be initiated by CoA-mediated, sequential transformation into CoA-modified forms. This modification favours the notion that intramitochondrial degradation by a matrix-resident ATP-dependent protease may be preceded by a specific modification by CoA. In a mitochondrial matrix fraction the MgATP-dependent decrease in anti-CoA immunoreactivity coincided with both a decrease in the anti-protein immunoreactivity of acetyl-CoA acetyltransferase and/or of 3-ketoacyl-CoA thiolase, and with the appearance of proteolytic fragments. A closer analysis of the degradation pattern revealed, however, a breakdown of the unmodified acetyl-CoA acetyltransferase and of its CoA-modified form, A1, whereas the form that is more highly modified by CoA, A2, proved to be inaccessible towards an ATP-dependent protease. In mammalian mitochondrial matrix, proteins can be degraded selectively by a matrix-resident ATP-dependent protease. The process of CoA modification results finally in the protection of matrix proteins from degradation. In cultured hepatocytes, leupeptin, an inhibitor of lysosomal proteases, did not affect the steady-state level of the mitochondrial matrix protein acetyl-CoA acetyltransferase. However, leupeptin mediated a specific accumulation of mitochondrial matrix proteins in the cytosolic fractions of hepatocytes cultured over a 24 h period. The levels of acetyl-CoA acetyltransferase, 3-ketoacyl-CoA thiolase and glutamate dehydrogenase proteins increased 1.9-, 2.0- and 2.2-fold respectively. Their status as mature, oligomeric, but enzymically inactive enzymes strongly suggests that they originate from a leakage of autophagosomes, a constituent of the non-selective autophagic/lysosomal pathway for degradation of whole mitochondria.
Collapse
Affiliation(s)
- Walter Huth
- Georg-August-Universität Göttingen, Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, D-37073 Göttingen, Germany.
| | | | | |
Collapse
|
9
|
Chapter 11 The Neuronal Ceroid-lipofuscinoses (Batten Disease). ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Tanner A, Shen BH, Dice JF. Turnover of F1F0-ATP synthase subunit 9 and other proteolipids in normal and Batten disease fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:251-62. [PMID: 9375799 DOI: 10.1016/s0925-4439(97)00048-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fibroblasts derived from patients with late infantile neuronal ceroid lipofucsinosis (NCL) and from a mouse model of NCL are similar to cells in intact animals in that they accumulate subunit 9 of mitochondrial F1F0-ATP synthase (F-ATPase) (Tanner, A., Dice, J.F., Cell Biol. Int. 19 (1995) 71-75). We now report no differences in the synthetic rates of F-ATPase subunit 9 in such affected cells when compared to control cells. However, the degradation rates of F-ATPase subunit 9 are reduced in both the affected human and mouse cells. This reduced degradation applies only to subunit 9 and the homologous vacuolar ATPase subunit among five distinct, reproducible proteolipid bands analyzed. Approximately 15% of newly synthesized F-ATPase subunit 9 is rapidly degraded in control cells, but this rapidly degraded component is absent in both the human and mouse NCL fibroblasts. At confluence, when the accumulated F-ATPase subunit 9 transiently disappears from human NCL fibroblasts, there is an increased degradation of all proteolipids. The pathway of degradation that is enhanced at confluence is likely to correspond to lysosomal macroautophagy. We confirmed that lysosomes were able to degrade F-ATPase subunit 9 after endocytosis of radiolabeled mitochondria. Human NCL fibroblasts were less active than control cells in this lysosomal degradation of endocytosed F-ATPase subunit 9. However, this difference was not specific for F-ATPase subunit 9 since it also applied to total endocytosed mitochondrial protein. We conclude that degradation of F-ATPase subunit 9 can occur by multiple pathways and that a mitochondrial pathway of proteolysis is defective in the late infantile human and mouse forms of NCL.
Collapse
Affiliation(s)
- A Tanner
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
11
|
Katz ML. Decreased plasma carnitine and trimethyl-L-lysine levels associated with lysosomal accumulation of a trimethyl-L-lysine containing protein in Batten disease. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:192-8. [PMID: 8988235 DOI: 10.1016/s0925-4439(96)00054-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Batten disease, or juvenile neuronal ceroid-lipofuscinosis, is an autosomal-recessive hereditary disorder that leads to blindness, severe neurological degeneration, and premature death. The disease is characterized by massive accumulation of lysosomal storage bodies in most tissues. A significant constituent of the storage material is a protein that appears to be almost identical to a small hydrophobic inner mitochondrial membrane protein, subunit c of ATP synthase. The protein isolated from the storage bodies contains an epsilon-N-trimethyl-L-lysine (TML) residue at amino acid position 43. The presence of TML in the stored protein suggests that one of the lysine residues in subunit c is normally trimethylated, and this trimethylation may act as a signal to initiate degradation of the protein. Free TML produced by the degradation of TML-containing proteins is the first intermediate in the carnitine biosynthetic pathway. It is possible that trimethylated subunit c is a major source of the free TML used in carnitine biosynthesis. If this is the case, one would predict that the genetic defect resulting in the accumulation of TML containing subunit c would also reduce systemic levels of free TML and carnitine. To evaluate this possibility, plasma TML and carnitine levels were measured in affected human subjects, heterozygous carriers, and normal controls. Both TML and carnitine levels were significantly depressed in the affected individuals. This suggests that subunit c is normally a major source of TML for carnitine biosynthesis. In Batten disease, failure to degrade the TML-containing form of subunit c is probably responsible for the reduction in plasma TML and carnitine levels.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, University of Missouri School of Medicine, Columbia 65212, USA.
| |
Collapse
|
12
|
Ezaki J, Wolfe LS, Ishidoh K, Muno D, Ueno T, Kominami E. Lysosomal proteinosis based on decreased degradation of a specific protein, mitochondrial ATP synthase subunit C: Batten disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 389:121-8. [PMID: 8861001 DOI: 10.1007/978-1-4613-0335-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Ezaki
- Department of Biochemistry, Juntendo University of Scool of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Jolly RD. Batten disease (ceroid-lipofuscinosis): the enigma of subunit c of mitochondrial ATP synthase accumulation. Neurochem Res 1995; 20:1301-4. [PMID: 8786815 DOI: 10.1007/bf00992504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ceroid-lipofuscinosis is an inherited neurodegenerative disease of human beings and domestic animals characterized by the accumulation in neurons and other cells of a fluorescent lipopigment. In the ovine form of disease, subunit c of mitochondrial ATP synthase is the dominant accumulated metabolite ( > 50%). It also accumulates significantly in the late infantile and juvenile forms of the human disease and several other animal forms. Evidence is accumulating that the underlying biochemical defect may be associated with mitochondria. The extreme hydrophobicity of subunit c and its propensity to aggregate with lipids into regular multilamellar arrays that cannot be catabolised may reflect an initial defect not necessarily associated with faulty proteolysis. This hypothesis extends an earlier one that subunit c accumulated due to a defect in its catabolic pathway.
Collapse
Affiliation(s)
- R D Jolly
- Department of Veterinary Pathology and Public Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Abstract
Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called 'short-lived' proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.
Collapse
Affiliation(s)
- H P Jennissen
- Institut für Physiologische Chemie, Universität-GHS-Essen, Germany
| |
Collapse
|
15
|
Schwerdt G, Huth W. Turnover and transformation of mitochondrial acetyl-CoA acetyltransferase into CoA-modified forms. Biochem J 1993; 292 ( Pt 3):915-9. [PMID: 8100417 PMCID: PMC1134201 DOI: 10.1042/bj2920915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rat liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase, EC 2.3.1.9) exists additionally in the CoA-modified forms A1 and A2. After a pulse of radioactivity using [35S]methionine in hepatocytes, the highest radioactivity was obtained in the unmodified enzyme. Over the chase time, the radioactivity in the unmodified enzyme decreased, but simultaneously increased in both CoA-modified forms, thus proving that the fully active unmodified enzyme exists before the partially active modified forms A1 and A2. Also, the specific radioactivity (ratio % radioactivity/% immunoreactive area) of A1 > A2 demonstrates a sequential CoA modification of form A1 to form A2. Acetyl-CoA acetyltransferase was degraded with an apparent half-life of 38.0 h: the modified forms A1 and A2 have half-lives of 24.5 and 7.2 h. The physiological meaning of the CoA modification of acetyl-CoA acetyltransferase is not yet understood.
Collapse
Affiliation(s)
- G Schwerdt
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
16
|
Vargas JL, Knecht E, Hernández-Yago J, Grisolía S. Cooperation of lysosomes and inner mitochondrial membrane in the degradation of carbamoyl phosphate synthetase and other proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1034:268-74. [PMID: 2194571 DOI: 10.1016/0304-4165(90)90049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbamoyl phosphate synthetase (CPS) from rat liver is proteolitically inactivated at acid pH by broken lysosomes. Inactivation increases when lysosomes are previously incubated with inner mitochondrial membrane, although this mitochondrial fraction does not inactivate CPS 'per se'. The increased degradation is due to membrane factor(s), most probably mitochondrial proteinase(s), solubilized by lysosomal matrix proteinases, after incubation of the inner mitochondrial membrane fraction with broken lysosomes. This (these ) factor(s) degrade(s) CPS and other proteins in the absence of lysosomal proteinases or when these are inhibited by leupeptin, chymostatin and pepstatin. We have also tested the possible regulation of this degradation and found that ATP and, particularly, acetyl glutamate accelerate the degradation of CPS by the factor(s) liberated from the inner mitochondrial membrane.
Collapse
Affiliation(s)
- J L Vargas
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Centro Asociado del C.S.I.C., Valencia, Spain
| | | | | | | |
Collapse
|
17
|
|
18
|
Miralles VJ, Marcote MJ, Hernández-Yago J, Grisolía S. Loading rat liver mitochondria with apocytochrome c provokes exit of cytochrome c. Arch Biochem Biophys 1988; 266:516-21. [PMID: 2847655 DOI: 10.1016/0003-9861(88)90284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rat liver mitochondria were loaded with cytochrome c by incubation with large amounts of [14C]apocytochrome c. After being washed they were incubated with either more apocytochrome c or cytochrome c. There was no release of labeled proteins from the mitochondria when incubated with cytochrome c. However, there was when incubated with apocytochrome c. The material released showed only one radioactive band which migrated as cytochrome c. Also no release of proteins other than cytochrome c was detected when liver mitochondria isolated from rats injected with [35S]methionine were incubated with apocytochrome c. These results suggest that the level and possibly the turnover of cytochrome c in rat liver mitochondria is regulated by the entry of apocytochrome c into mitochondria.
Collapse
Affiliation(s)
- V J Miralles
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Spain
| | | | | | | |
Collapse
|
19
|
Vargas JL, Roche E, Knecht E, Aniento F, Grisolía S. The mitochondrial probe rhodamine 123 inhibits in isolated hepatocytes the degradation of short-lived proteins. FEBS Lett 1988; 233:259-62. [PMID: 3384093 DOI: 10.1016/0014-5793(88)80438-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fluorescent dye rhodamine 123 (R123) decreases the intracellular ATP levels and also inhibits the degradation of short-lived proteins in isolated hepatocytes. This inhibition affects lysosomal and, to some extent, non-lysosomal mechanisms. The degradation of short-lived proteins decreases more when ATP levels are less than 40% of those in control cells, in contrast to the reported linear correlation between ATP levels and degradation of long-lived proteins. R123 provides a powerful probe for clarifying the proteolytic mechanisms involved in degradation of short-lived proteins and the ATP requirements in protein degradation. Indeed, as illustrated, the results suggest different mechanisms for the degradation of short- and long-lived proteins. Moreover, they provide a warning for the clinical use of this reagent.
Collapse
Affiliation(s)
- J L Vargas
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Centro asociado al Consejo Superior de Investigaciones Cientificas, Valencia, Spain
| | | | | | | | | |
Collapse
|
20
|
Vargas JL, Roche E, Knecht E, Grisolía S. Differences in the half-lives of some mitochondrial rat liver enzymes may derive partially from hepatocyte heterogeneity. FEBS Lett 1987; 224:182-6. [PMID: 3678491 DOI: 10.1016/0014-5793(87)80444-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The different turnover rates of rat liver mitochondrial enzymes make autophagy unlikely to be the main mechanism for degradation of mitochondria. Although alternatives have been presented, hepatocyte heterogeneity has not been considered. Lighter hepatocytes isolated in a discontinuous Percoll gradient contain more glutamate dehydrogenase (GDH) (half-life 1 day) and a more active autophagic system than heavier hepatocytes. The latter contain more carbamoyl phosphate synthase (CPS) and ornithine carbamoyl transferase (OTC) (half-lives 8 days) but less lysosomal activity. As expected, isolated autophagic vacuoles contain, relative to the mitochondrial content, 3-times less OTC and CPS than GDH, probably reflecting a faster lysosomal engulfment of mitochondria in the light hepatocytes (which contain more GDH). These data may explain some of the half-life differences of the enzymes studied.
Collapse
Affiliation(s)
- J L Vargas
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Alonso E, Rubio V. Inactivation of mitochondrial carbamoyl phosphate synthetase induced by ascorbate, oxygen, and Fe3+ in the presence of acetylglutamate: protection by ATP and HCO3- and lack of inactivation of ornithine transcarbamylase. Arch Biochem Biophys 1987; 258:342-50. [PMID: 2823712 DOI: 10.1016/0003-9861(87)90353-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Of the two mitochondrial enzymes of the urea cycle, carbamoyl phosphate synthetase (CPS) was and ornithine transcarbamylase (OTC) was not inactivated by the Fe3+-oxygen-ascorbate model system for mixed-function oxidation [R. L. Levine, (1983) J. Biol. Chem. 258, 11828-11833]. The susceptibility of OTC was not increased by its substrates, products, or inhibitors, whereas that of CPS was markedly increased by acetylglutamate (its allosteric activator) when ATP was absent. Thus, acetylglutamate binds in the absence of ATP and exposes to oxidation essential groups of the enzyme. We estimate for this binding a KD value of 1.6 mM, which greatly exceeds the KD values (less than 10 microM) determined in the presence of ATP and bicarbonate. ATP, and even more, mixtures of ATP and bicarbonate protected CPS from inactivation. Acetylglutamate exposes the site for the ATP molecule that yields Pi, and it appears that ATP protects by binding at this site. Experiments of limited proteolysis with elastase suggest that oxidation prevents this binding of ATP and show that it accelerates cleavage of CPS by the protease, thus supporting the idea that oxidation may precede proteolysis. Trypsin, chymotrypsin, and papain also hydrolyze the oxidized enzyme considerably faster than the native enzyme. Our results also support the idea that oxidative inactivation is site specific and requires sites on the enzyme for Me2+ and, possibly, for a nucleotide.
Collapse
Affiliation(s)
- E Alonso
- Laboratory of Cell Chemistry, Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Spain
| | | |
Collapse
|
22
|
Abstract
The relative half-life of ornithine transcarbamylase from rat liver has been determined using the double isotope technique and affinity chromatography. The calculated half-life (6-9 days) is similar to that of mitochondria and of the other mitochondrial enzyme of the urea cycle, carbamoyl-phosphate synthase. Therefore, both mitochondrial urea cycle enzymes are most probably degraded mainly via the lysosomal (autophagic) pathway of mitochondrial protein degradation.
Collapse
|
23
|
Knecht E, Roche E. The reduction-oxidation status may influence the degradation of glyceraldehyde-3-phosphate dehydrogenase. FEBS Lett 1986; 206:339-42. [PMID: 3530813 DOI: 10.1016/0014-5793(86)81008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NADH and NADPH accelerate the 'in vitro' rate of proteolysis of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by elastase and other proteases, including lysosomal proteases. NAD+ and NADP+ have the opposite effect. Since there is a good correlation between proteolytic susceptibility of proteins and their 'in vivo' degradation rates, a possible role of the reduction-oxidation status in controlling the intracellular degradation of GAPDH is advanced.
Collapse
|
24
|
Beynon RJ, Bond JS. Catabolism of intracellular protein: molecular aspects. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 251:C141-52. [PMID: 3017118 DOI: 10.1152/ajpcell.1986.251.2.c141] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
All living cells regulate the content and composition of their resident proteins, but the mechanisms by which this is accomplished are not understood. The process of protein degradation has an important role in determining steady state and fluctuations of protein concentrations in mammalian cells. This process may be regulated by innate properties of the protein substrates, by factors that interact or "brand" proteins for degradation or by the degradative machinery of the cell. For a specific protein, there appears to be a committed step, an irreversible event that leads to rapid and extensive degradation. That initial event may or may not involve 1) proteolysis, 2) a nonproteolytic covalent modification or branding event (e.g., oxidation, ubiquitin conjugation), 3) denaturation or unfolding of the protein, or 4) sequestration. The degradative machinery of cells may either recognize proteins committed to degradation or initiate degradation, but the process must be selective because there is great heterogeneity in the rates of degradation for different proteins of one cell. The degradative process certainly requires proteases, and it is probable that lysosomal and extralysosomal proteases are involved in the catabolism of cellular proteins. We review here briefly what is currently known about the factors that may determine the half-life of a protein in a mammalian cell, the role of the protein substrate and sequestration in the process, the proteolytic and nonproteolytic enzymes that may initiate the degradative process, and the regulation of extensive degradation of proteins in cells.
Collapse
|