Miles CS, Ost TW, Noble MA, Munro AW, Chapman SK. Protein engineering of cytochromes P-450.
BIOCHIMICA ET BIOPHYSICA ACTA 2000;
1543:383-407. [PMID:
11150615 DOI:
10.1016/s0167-4838(00)00236-3]
[Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cytochromes P-450 are an immensely important superfamily of heme-containing enzymes. They catalyze the monooxygenation of an enormous range of substrates. In bacteria, cytochromes P-450 are known to catalyze the hydroxylation of environmentally significant substrates such as camphor, phenolic compounds and many herbicides. In eukaryotes, these enzymes perform key roles in the synthesis and interconversion of steroids, while in mammals hepatic cytochromes P-450 are vital for the detoxification of many drugs. As such, the cytochromes P-450 are of considerable interest in medicine and biotechnology and are obvious targets for protein engineering. The purpose of this article is to illustrate the ways in which protein engineering has been used to investigate and modify the properties of cytochromes P-450. Illustrative examples include: the manipulation of substrate selectivity and regiospecificity, the alteration of membrane binding properties, and probing the route of electron transfer.
Collapse