1
|
Abstract
Flow cytometry is a single-cell technology that measures scatter and fluorescence to establish a set of unique cellular properties. Flow cytometry is used in many areas of science, in particular biotechnology and medicine, but also in industrial applications. Flow cytometry can identify multiple phenotypic subsets from a mixture, select a single cell and even isolate that cell by a process called cell sorting. The field is currently undergoing dramatic changes. We are moving rapidly from the polychromic flow cytometry that has been the go-to technology for 45 years to spectral flow cytometry, which is now the most significant change in nearly half a century of flow cytometry. With change comes opportunity. Even spectral flow cytometry will morph into second-generation spectral flow cytometry within 5 years. New, exciting features will open up molecular diagnostics and physiology to flow cytometry.
Collapse
|
2
|
Rochowiak W, Kasprzycka E, Assunção IP, Kynast U, Lezhnina M. Long-lifetime green-emitting Tb3+ complexes for bacterial staining. Aust J Chem 2022. [DOI: 10.1071/ch21315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Lezhnina MM, Rochowiak W, Göhde W, Kuczius R, Kynast U. The microbial threat: Can rare earths help? JOURNAL OF BIOPHOTONICS 2020; 13:e202000068. [PMID: 32500670 DOI: 10.1002/jbio.202000068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Despite an ever increasing demand for reliable and cheap methods in the detection and quantification of microbes, surprisingly few investigations have explored or utilized the luminescence of rare earths in the microbial context, neither in conventional, that is, plating and microscopic imaging techniques, nor in advanced methods like fluorescence flow cytometry. We have thus investigated the potential of some rare earth complexes and hybrid materials for microbiological analysis. We found fairly simple procedures for internal staining (dyes inside the bacterial cell) and external staining (dyes on the cell surface). The present paper is predominantly relying on microscopic imaging and luminescence spectroscopies (excitation, emission, decay times), but also evaluates model rare earth microspheres to estimate an eventual rare earth based stain for a fast and sensitive bacteria enumeration with luminescence flow cytometry.
Collapse
Affiliation(s)
- Marina M Lezhnina
- Quantum Analysis GmbH, Münster, Germany
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | - Weronika Rochowiak
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| | | | - Rauni Kuczius
- Mikrobiologisches Labor Dr. Michael Lohmeyer GmbH, Münster, Germany
| | - Ulrich Kynast
- Institute for Optical Technologies, Münster University of Applied Sciences, Steinfurt, Germany
| |
Collapse
|
5
|
Jin D, Lu Y, Leif RC, Yang S, Rajendran M, Miller LW. How to build a time-gated luminescence microscope. ACTA ACUST UNITED AC 2014; 67:2.22.1-2.22.36. [PMID: 24510771 DOI: 10.1002/0471142956.cy0222s67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sensitivity of filter-based fluorescence microscopy techniques is limited by autofluorescence background. Time-gated detection is a practical way to suppress autofluorescence, enabling higher contrast and improved sensitivity. In the past few years, three groups of authors have demonstrated independent approaches to build robust versions of time-gated luminescence microscopes. Three detailed, step-by-step protocols are provided here for modifying standard fluorescent microscopes to permit imaging time-gated luminescence.
Collapse
Affiliation(s)
- Dayong Jin
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | - Yiqing Lu
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | | | - Sean Yang
- Newport Instruments, San Diego, California
| | - Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Nuñez V, Upadhyayula S, Millare B, Larsen JM, Hadian A, Shin S, Vandrangi P, Gupta S, Xu H, Lin AP, Georgiev GY, Vullev VI. Microfluidic Space-Domain Time-Resolved Emission Spectroscopy of Terbium(III) and Europium(III) Chelates with Pyridine-2,6-Dicarboxylate. Anal Chem 2013; 85:4567-77. [DOI: 10.1021/ac400200x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vicente Nuñez
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Srigokul Upadhyayula
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
| | - Brent Millare
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Jillian M. Larsen
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Ali Hadian
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sanghoon Shin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Prashanthi Vandrangi
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sharad Gupta
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Hong Xu
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Adam P. Lin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Georgi Y. Georgiev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Valentine I. Vullev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
- Department
of Chemistry, University of California,
Riverside, California 92521,
United States
| |
Collapse
|
7
|
Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 2013; 42:6924-58. [DOI: 10.1039/c3cs60060b] [Citation(s) in RCA: 697] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|