1
|
Liang A, Huang J, He X, Tang X, Xu X, Chen M, Meng L, Lin C. MiR-501-3p/SPC24 axis affects cell proliferation, migration, invasion, apoptosis, and prognosis in renal cell carcinoma. Braz J Med Biol Res 2025; 58:e13507. [PMID: 39907402 PMCID: PMC11793156 DOI: 10.1590/1414-431x2024e13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
It has been confirmed that the expression of miR-501-3p is closely related to the behavior of several cancers. This study aimed to elucidate the effects of miR-501-3p/SPC24 axis on the behavior of renal cancer cells and to identify its prognostic value in renal cancer. First, the expression of miR-501-3p in the renal cell carcinoma (RCC) cell line was detected using real-time quantitative polymerase chain reaction (RT-qPCR). Second, cell function identification experiments were performed, including CCK-8, scratch, transwell invasion, and flow cytometry assays. Several databases were applied to explore the possible mechanism of miR-501-3p tumor suppressor effect in RCC. To explore the value of miR-501-3p/SPC24 axis in predicting renal cancer patient overall survival (OS), GEPIA (http://gepia.cancer-pku.cn/index.html) was used. Finally, western blot was performed to detect the expression level of SPC24 in renal cancer cells predicted by bioinformatics analysis. Dual-Luciferase Reporter Assay was used to verify if SPC24 is a target of mir-501-3p. MiR-501-3p was found to be down-regulated in cancer cells and tissues and to play a role in suppressing tumor cell proliferation, cell viability, cell migration, and cell invasion, while promoting apoptosis. We also found that high expression levels of SPC24 were associated with shorter OS time in patients diagnosed with renal cell carcinoma. In addition, the results of TCGA data analysis and western blot showed that the tumor suppressor effect of miR-501-3p may be achieved by targeting SPC24. The MiR-501-3p/SPC24 axis affects cell proliferation, migration, invasion, apoptosis, and prognosis in renal cell carcinoma.
Collapse
Affiliation(s)
- Aidi Liang
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiapeng Huang
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyi He
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinru Tang
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuncan Xu
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Meng
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Canbin Lin
- Department of Urology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
3
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Xu Y, Sun Y, Song X, Ren J. The mechanisms and diagnostic potential of lncRNAs, miRNAs, and their related signaling pathways in cervical cancer. Front Cell Dev Biol 2023; 11:1170059. [PMID: 37215076 PMCID: PMC10192553 DOI: 10.3389/fcell.2023.1170059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Cervical cancer (CC), the fourth most prevalent type of cancer among women worldwide, is associated with high rates of morbidity and mortality. Due to the long period of latency in CC, most patients are already in the middle to late stages when initially diagnosed, which greatly reduces the clinical cure rate and quality of survival, thus resulting in poor outcomes. In recent years, with continuous exploration in the fields of bioinformatics and molecules, it has been found that ncRNAs, including miRNAs and lncRNAs, without the ability to translate proteins are capable of activating or inhibiting certain signaling pathways by targeting and modulating the level of expression of proteins involved in these signaling pathways. ncRNAs play important roles in assisting with diagnosis, drug administration, and prediction of prognosis during CC progression. As an entry point, the mechanisms of interaction between miRNAs, lncRNAs, and signaling pathways have long been a focus in basic research relating to CC, and numerous experimental studies have confirmed the close relationship of miRNAs, lncRNAs, and signaling pathways with CC development. Against this background, we summarize the latest advances in the involvement of lncRNA- and miRNA-related signaling pathways in the development of CC to provide guidance for CC treatment.
Collapse
|
5
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
6
|
Li K, Chi R, Liu L, Feng M, Su K, Li X, He G, Shi Y. 3D genome-selected microRNAs to improve Alzheimer's disease prediction. Front Neurol 2023; 14:1059492. [PMID: 36860572 PMCID: PMC9968804 DOI: 10.3389/fneur.2023.1059492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a type of neurodegenerative disease that has no effective treatment in its late stage, making the early prediction of AD critical. There have been an increase in the number of studies indicating that miRNAs play an important role in neurodegenerative diseases including Alzheimer's disease via epigenetic modifications including DNA methylation. Therefore, miRNAs may serve as excellent biomarkers in early AD prediction. Methods Considering that the non-coding RNAs' activity may be linked to their corresponding DNA loci in the 3D genome, we collected the existing AD-related miRNAs combined with 3D genomic data in this study. We investigated three machine learning models in this work under leave-one-out cross-validation (LOOCV): support vector classification (SVC), support vector regression (SVR), and knearest neighbors (KNNs). Results The prediction results of different models demonstrated the effectiveness of incorporating 3D genome information into the AD prediction models. Discussion With the assistance of the 3D genome, we were able to train more accurate models by selecting fewer but more discriminatory miRNAs, as witnessed by several ML models. These interesting findings indicate that the 3D genome has great potential to play an important role in future AD research.
Collapse
Affiliation(s)
- Keyi Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Runqiu Chi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang He ✉
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,Yi Shi ✉
| |
Collapse
|
7
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
8
|
Expression pattern and clinical significance of β-catenin gene and protein in patients with primary malignant and benign bone tumors. Sci Rep 2022; 12:9488. [PMID: 35676319 PMCID: PMC9177768 DOI: 10.1038/s41598-022-13685-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
This study is aimed to unravel the status of local and circulating β-catenin in different primary bone tumors and its relevance to tumor types, severity, and chemotherapy. The β-catenin mRNA expression level and the expression of the protein (intensity level) were evaluated in tumor tissue and peripheral blood mononuclear cells of 150 patients with different types of primary bone tumors (78 malignant and 72 benign tumors) using Real-Time PCR and immunohistochemistry. The β-catenin mRNA expression level and the expression of the protein were increased in bone tumors which was positively correlated with the tumor malignancy. Amongst osteosarcoma, Ewing's Sarcoma, chondrosarcoma, osteochondroma, Giant Cell Tumor, and exostosis tumors, the osteosarcoma, and Giant Cell Tumor groups showed the highest level of β-catenin expression. The β-catenin expression in malignant bone tumors was significantly correlated with tumor grade, size, metastasis, tumor recurrent, and the level of response to chemotherapy. A similar pattern of β-catenin gene expression and its association with tumor characteristics was detected in the patient's peripheral blood cells. The simultaneous increase in the expression of the β-catenin gene and protein in tumor tissue and in circulating blood cells and its relationship with tumor severity indicates the possible promoting role of β-catenin in primary bone tumor pathogenesis.
Collapse
|
9
|
Li M, Xu DM, Lin SB, Yang ZL, Xu TY, Yang JH, Lin ZX, Huang ZK, Yin J. Transcriptional expressions of hsa-mir-183 predicted target genes as independent indicators for prognosis in bladder urothelial carcinoma. Aging (Albany NY) 2022; 14:3782-3800. [PMID: 35503998 PMCID: PMC9134959 DOI: 10.18632/aging.204040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To uncover novel prognostic and therapeutic targets for BLCA, our study is the first to investigate the role of hsa-mir-183 and its up-regulated predicted target genes in bladder urothelial carcinoma. METHODS To address this issue, our study explored the roles of hsa-mir-183 predicted target genes in the prognosis of BLCA via UALCAN, Metascape, Kaplan-Meier plotter, Human Protein Atlas, TIMER2.0, cBioPortal and Genomics of Drug Sensitivity in Cancer databases. RESULTS High transcriptional expressions of PDCD6, GNG5, PHF6 and MAL2 were markedly relevant to favorable OS in BLCA patients, whereas SLC25A15 and PTDSS1 had opposite expression significance. Additionally, high transcriptional expression of PDCD6, GNG5, PHF6, MAL2, SLC25A15 and PTDSS1 were significantly correlated with BLCA individual cancer stages and molecular subtypes. Furthermore, high mutation rate of PDCD6, MAL2, SLC25A15 and PTDSS1 were observed. Finally, TP53 mutation of PDCD6, GNG5, PHF6, MAL2, SLC25A15 and PTDSS1 has guiding significance for drug selection in BLCA. CONCLUSIONS PDCD6, GNG5, PHF6, MAL2, SLC25A15 and PTDSS1 could be the advanced independent indicators for prognosis of BLCA patients, and TP53-mutation might be a biomarker for drug option in BLCA patients.
Collapse
Affiliation(s)
- Ming Li
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Da-Ming Xu
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shu-Bin Lin
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zheng-Liang Yang
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Teng-Yu Xu
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin-Huan Yang
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ze-Xin Lin
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ze-Kai Huang
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Yin
- Division of Hematology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
10
|
Byun YJ, Kang HW, Piao XM, Zheng CM, Moon SK, Choi YH, Kim WT, Lee SC, Yun SJ, Kim WJ. Expression of hsv1-miR-H18 and hsv2-miR-H9 as a field defect marker for detecting prostate cancer. Prostate Int 2022; 10:1-6. [PMID: 35155300 PMCID: PMC8804185 DOI: 10.1016/j.prnil.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background Prostate-specific antigen (PSA) is a marker of prostate cancer (PCa), although its efficacy as a diagnostic marker remains controversial. A high false-positive rate leads to repeat biopsy in approximately 70% of patients, which may not be necessary. Epigenetic biomarkers of field cancerization have been investigated widely as promising tools for the diagnosis of patients with suspected tumors. In the current study, we examined the diagnostic value of two microRNA (miRNA) candidates, hsv1-miR-H18 and hsv2-miR-H9, using formalin-fixed paraffin-embedded (FFPE) tissues from patients with PCa or benign prostate hyperplasia (BPH) (as controls) to determine the usefulness of these markers for detecting the presence of cancer. Methods Expression of hsv1-miR-H18 and hsv2-miR-H9 in 201 FFPE tissues, including 52 primary tumors, 73 surrounding noncancerous tissues, and 90 BPH nontumor controls was examined by real-time PCR. Results Expression of hsv1-miR-H18 and hsv2-miR-H9 was significantly higher in primary tumors from PCa patients than in BPH controls (P < 0.0001). In patients within the PSA gray zone, the two viral miRNAs could distinguish PCa from controls with appropriate sensitivity and specificity. Expression of the two miRNAs did not differ between primary tumors and noncancerous surrounding tissues. Conclusions The viral miRNAs hsv1-miR-H18 and hsv2-miR-H9 may be associated with field cancerization of PCa and could be promising supplemental biomarkers to the PSA assay to decrease the rate of unnecessary biopsy, particularly in patients within the PSA gray zone.
Collapse
Affiliation(s)
- Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Institute of Urotech, Cheongju, 28644, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Institute of Urotech, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
11
|
Bareke H, Juanes-Velasco P, Landeira-Viñuela A, Hernandez AP, Cruz JJ, Bellido L, Fonseca E, Niebla-Cárdenas A, Montalvillo E, Góngora R, Fuentes M. Autoimmune Responses in Oncology: Causes and Significance. Int J Mol Sci 2021; 22:ijms22158030. [PMID: 34360795 PMCID: PMC8347170 DOI: 10.3390/ijms22158030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Specific anti-tumor immune responses have proven to be pivotal in shaping tumorigenesis and tumor progression in solid cancers. These responses can also be of an autoimmune nature, and autoantibodies can sometimes be present even before the onset of clinically overt disease. Autoantibodies can be generated due to mutated gene products, aberrant expression and post-transcriptional modification of proteins, a pro-immunogenic milieu, anti-cancer treatments, cross-reactivity of tumor-specific lymphocytes, epitope spreading, and microbiota-related and genetic factors. Understanding these responses has implications for both basic and clinical immunology. Autoantibodies in solid cancers can be used for early detection of cancer as well as for biomarkers of prognosis and treatment response. High-throughput techniques such as protein microarrays make parallel detection of multiple autoantibodies for increased specificity and sensitivity feasible, affordable, and quick. Cancer immunotherapy has revolutionized cancer treatments and has made a considerable impact on reducing cancer-associated morbidity and mortality. However, immunotherapeutic interventions such as immune checkpoint inhibition can induce immune-related toxicities, which can even be life-threatening. Uncovering the reasons for treatment-induced autoimmunity can lead to fine-tuning of cancer immunotherapy approaches to evade toxic events while inducing an effective anti-tumor immune response.
Collapse
Affiliation(s)
- Halin Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul 34722, Turkey;
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Angela-Patricia Hernandez
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Juan Jesús Cruz
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Lorena Bellido
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Emilio Fonseca
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Alfonssina Niebla-Cárdenas
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain;
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-811
| |
Collapse
|
12
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Vitamin D Deficiency and Molecular Changes in Circulating MicroRNAs in Older Adults with Lower Back Pain. Pain Res Manag 2021; 2021:6662651. [PMID: 34055120 PMCID: PMC8149253 DOI: 10.1155/2021/6662651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Background MicroRNAs play an essential role in regulating pain processing within a wide range of clinical pain disorders. Objectives The present study aimed to evaluate the role of circulating miRNAs as biomarkers of lower back pain in older adults. In addition, the correlation between miRNAs and other related cofounders such as muscle function, adiposity, malnutrition, and Ca and vitamin D intake was assessed. Methods A total of 110 older subjects with an age range of 40-60 years were included in this study. The participants were classified according to a modified Oswestry lower back pain disability questionnaire (OSW) into subjects with minimal LBP (n = 40; LBP score: 0-20%), moderate LBP (n = 35; LBP score: 20-40%), and severe LBP (n = 35; LBP score: 41-60%). RT-PCR and immunoassays were used to study the circulating miRNA profile, vitamin D status, and CRP, IL-6, TNF-α, s-Ca, s-BAP, s-OC, and s-NTX levels. In addition, malnutrition and muscle performance were estimated in all subjects as other factors related to LBP. Results In this study, normal LBP-OSW cutoff values (8.96 ± 3.6) were reported in 36.4% of the total population, whereas 63.6% of the population had higher LBP-OSW scores, classified as follows: 31.8% with moderate LBP (LBP-OSW score: 31.4 ± 9.1) and 31.8% with severe LBP (LBP-OSW score: 54.9 ± 14.6). Four circulating miRNAs, namely, miR-146a, miR-558, miR-155, and miR-124a, as biomarkers of the intensity of back pain were identified in all participants. In subjects with moderate to severe LBP, the expression levels of miR-146a and miR-558 were significantly reduced and those of miR-155 and miR-124a were significantly increased compared to subjects with minimal LBP scores. Subjects with moderate to severe LBP showed a significant increase in adiposity markers, lower PA, muscle performance, malnutrition, and lower Ca and vitamin D intake compared to normal controls. In addition, serum levels of vitamin D and circulated plasma markers of inflammation and bone metabolism such as CRP, IL-6, TNF-α, s-Ca, s-BAP, s-OC, and s-NTX were significantly reduced in severe LBP cases compared to those with minimal LBP scores. The expressed circulating miRNAs were significantly associated with the measured muscle performance, adiposity, PA score, inflammation, and bone metabolism cofounders in subjects with higher LBP-OSW scores. The expressed miRNAs, along with other LBP cofounders, were significantly associated with ∼63.9-86.4% of the incidence of LBP in older adults. Conclusions In older adults with vitamin D deficiency, the severity of LBP was significantly associated with the expression of circulating miRNAs, adiposity, bone metabolism, inflammation, and muscle performance. In addition, the expressed miRNAs, along with other LBP cofounders, were significantly associated with ∼63.9-86.4% of the incidence of LBP in older adults. These results suggest the possibility of using microRNAs as therapeutics to alleviate established pain and as biomarkers in old adults with painful conditions.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Departments of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Fallico M, Raciti G, Longo A, Reibaldi M, Bonfiglio V, Russo A, Caltabiano R, Gattuso G, Falzone L, Avitabile T. Current molecular and clinical insights into uveal melanoma (Review). Int J Oncol 2021; 58:10. [PMID: 33649778 PMCID: PMC7910016 DOI: 10.3892/ijo.2021.5190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90-95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Matteo Fallico
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, I‑95125 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, I‑10122 Turin, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, I‑90127 Palermo, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department 'G.F. Ingrassia', Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
14
|
Liang Y, Cao D, Li Y, Liu Z, Wu J. MicroRNA-302a is involved in folate deficiency-induced apoptosis through the AKT-FOXO1-BIM pathway in mouse embryonic stem cells. Nutr Metab (Lond) 2020; 17:103. [PMID: 33372619 PMCID: PMC7720404 DOI: 10.1186/s12986-020-00530-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background Our previous study had shown that microRNA (miR)-302a played a key role in folate deficiency-induced apoptosis in mouse embryonic stem cells. However, details regarding the mechanism remain unclear. Transcription factors (TFs) and miRNAs are two key elements in gene regulation. The aim of this study is to construct the TF-miRNA gene regulation network and demonstrate its possible mechanism. Methods The TF-miRNA gene regulation network was constructed via bioinformatics methods. Chromatin immuno-coprecipitation PCR was selected to confirm the binding between miR-302a and TF. mRNA and protein levels were detected by Real-time quantitative PCR and western blotting. TargetScan prediction and Dual-Luciferase Reporter Assay system were used to confirm whether the miRNA binded directly to the predicted target gene. Results FOXO1 and miR-302a were selected as the key TF and miRNA, respectively. FOXO1 was confirmed to bind directly to the upstream promoter region of miR-302a. Real-time quantitative PCR and immunoblotting showed that in folate-free conditions, miR-302a and AKT were down regulated, while FOXO1 and Bim were up-regulated significantly. Additionally, treatment with LY294002 inhibitor revealed the involvement of the Akt/FOXO1/Bim signaling pathway in folate deficiency-induced apoptosis, rather than the ERK pathway. Finally, TargetScan prediction and double luciferase reporting experiments illustrated the ability of miR-302a to target the Bim 3′UTR region. Conclusion The involvement of miR-302a in folate deficiency-induced apoptosis through the AKT-FOXO1-BIM pathway in mESCs is a unique demonstration of the regulation mechanism of nutrient expression in embryonic development.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pediatric Respiratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dingding Cao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
15
|
Wu ZH, Zhong Y, Zhou T, Xiao HJ. miRNA biomarkers for predicting overall survival outcomes for head and neck squamous cell carcinoma. Genomics 2020; 113:135-141. [PMID: 33279650 DOI: 10.1016/j.ygeno.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor of the upper aerodigestive tract. The loss and gain of miRNA function promote cancer development through various mechanisms. RNA sequencing (RNA-seq) and miRNAs sequencing data from the Cancer Genome Atlas (TCGA) was used to show the dysfunctional miRNAs microenvironment and to provide useful biomarkers for miRNAs therapy. Seven miRNAs were found to be independent prognostic factors of HNSCC patients in the training cohort. A total of 60 target genes for these miRNAs were predicted. Nine target genes (CDCA4, CXCL14, FLNC, KLF7, NBEAL2, P4HA1, PFKM, PFN2 and SEPPINE1) were correlated with patient's overall survival (OS) outcomes. We identified novel miRNAs markers for the prognosis of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hong-Jun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
17
|
Pop-Bica C, Pintea S, Magdo L, Cojocneanu R, Gulei D, Ferracin M, Berindan-Neagoe I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:516850. [PMID: 33194579 PMCID: PMC7604406 DOI: 10.3389/fonc.2020.516850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a problem worldwide due to its rapid progression and low rate of response to treatment. The heterogeneity of these tumors observed in histopathology exam but also in the mutational status and gene expression pattern makes this malignancy difficult to treat in clinic. The present study investigated the effect of miR-21 and let-7 family members as prognostic biomarkers in NSCLC patients based on the results published in different studies regarding this subject until March 2019. The analysis revealed that these two transcripts are steady biomarkers for prediction of patient outcome or survival. Upregulated expression of miR-21 is associated with poor outcome of patients with NSCLC [HR = 1.87, 95% CI = (1.41, 2.47), p < 0.001]. The analysis regarding let-7 family, specifically let-7a/b/e/f, revealed that downregulated expression of these transcripts predicts poor outcome for NSCLC patients [HR = 2.61, 95% CI = (1.58, 4.30), p < 0.001]. Besides, the reliability of these microRNAs is reflected in the fact that their prognostic significance is constant given the different sample types (tissue, FFPE tissue, serum, serum/plasma or exosomes) used in the selected studies.
Collapse
Affiliation(s)
- Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sebastian Pintea
- Department of Psychology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine MedFuture, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Manuela Ferracin
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricută", Cluj-Napoca, Romania
| |
Collapse
|
18
|
Sammarco G, Gallo G, Vescio G, Picciariello A, De Paola G, Trompetto M, Currò G, Ammendola M. Mast Cells, microRNAs and Others: The Role of Translational Research on Colorectal Cancer in the Forthcoming Era of Precision Medicine. J Clin Med 2020; 9:2852. [PMID: 32899322 PMCID: PMC7564551 DOI: 10.3390/jcm9092852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, molecularly and anatomically, that develops in a multi-step process requiring the accumulation of several genetic or epigenetic mutations that lead to the gradual transformation of normal mucosa into cancer. In fact, tumorigenesis is extremely complex, with many immunologic and non-immunologic factors present in the tumor microenvironment that can influence tumorigenesis. In the last few years, a role for mast cells (MCs), microRNAs (miRNAs), Kirsten rat sarcoma (KRAS) and v-raf murine sarcoma viral oncogene homologue B (BRAF) in cancer development and progression has been suggested, and numerous efforts have been made to thoroughly assess their correlation with CRC to improve patient survival and quality of life. The identification of easily measurable, non-invasive and cost-effective biomarkers, the so-called "ideal biomarkers", for CRC screening and treatment remains a high priority. The aim of this review is to discuss the emerging role of mast cells (MCs), microRNAs (miRNAs), KRAS and BRAF as diagnostic and prognostic biomarkers for CRC, evaluating their influence as potential therapy targets in the forthcoming era of precision medicine.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Arcangelo Picciariello
- Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, Piazza G Cesare, 11, 70124 Bari, Italy;
| | - Gilda De Paola
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Mario Trompetto
- Department of Colorectal Surgery, S. Rita Clinic, 13100 Vercelli, Italy;
| | - Giuseppe Currò
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| | - Michele Ammendola
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| |
Collapse
|
19
|
MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers (Basel) 2020; 12:cancers12082009. [PMID: 32707943 PMCID: PMC7465219 DOI: 10.3390/cancers12082009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsies have become a convenient tool in cancer diagnostics, real-time disease monitoring, and evaluation of residual disease. Yet, the information still encrypted in the variety of tumor-derived molecules identified in biofluids has proven difficult to decipher due to the technological limitations imposed by their biological nature. Such is the case of extracellular vesicle (EV) encapsulated ncRNAs, which have gained traction in recent years as biomarkers. Due to their resilience towards degrading factors they may act as suitable disease indicators. This review addresses the less described issues in this context. We present an overview of less investigated biofluids that can be used for EV isolation in addition to different isolation approaches to overcome the technical challenges these specimens harbor. Furthermore, we summarize the latest technological advances providing improvement to ncRNA detection and analysis. Thereby, this review summarizes the current state-of-the-art methodologies regarding EV and EV derived miRNA analysis and how they compare to current approaches.
Collapse
|
20
|
Hosseini A, Mirzaei A, Salimi V, Jamshidi K, Babaheidarian P, Fallah S, Rampisheh Z, Khademian N, Abdolvahabi Z, Bahrabadi M, Ibrahimi M, Hosami F, Tavakoli-Yaraki M. The local and circulating SOX9 as a potential biomarker for the diagnosis of primary bone cancer. J Bone Oncol 2020; 23:100300. [PMID: 32551218 PMCID: PMC7292907 DOI: 10.1016/j.jbo.2020.100300] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
The SOX9 expression increased in tumor tissues and peripheral blood of malignant and benign bone tumors. The protein level of SOX9 is enhanced in malignant bone tumor tissues. SOX9 over-expression correlated with tumor severity, grade, invasion feature, poor response to therapy, and recurrence. Purpose The status of the local and circulating SOX9, a master regulator of the tumor fate, and its relevance to tumor types, severity, invasion feature, response to therapy, and chemotherapy treatment were surveyed in bone cancer in the current study. Methods The SOX9 expression level was evaluated in tissue and peripheral blood mononuclear cells from patients with different types of malignant and benign bone tumors also tumor margin tissues using Real-Time PCR. The protein level of SOX9 was assessed using immunohistochemistry and western blot analysis. Also, the correlations of the SOX9 expression level with the patient’s clinical and pathological features were considered. Results The remarkable overexpression of SOX9 was detected in bone tumors compared to tumor margin tissues (P < 0.0001). Malignant bone tumors revealed a higher expression of SOX9 compared to benign tumors (P < 0.0001) while osteosarcoma tumors showed higher expression levels compared to Ewing sarcoma, and chondrosarcoma. Overexpression of SOX9 was observed in high grade, metastatic, recurrent tumors also tumors with poor response to therapy. Besides, the patients under the chemotherapy treatment demonstrated higher levels of SOX9 compared to the rest of malignant tumors (P = 0.02). The simultaneous up-regulation of circulating SOX9 in the patients with bone cancer was observed compared to healthy individuals (P < 0.0001) accompanying with overexpression of SOX9 in malignant tumors compared to benign tumors (P < 0.0001). The circulating SOX9 expression was up-regulated in the patients with malignant bone tumors who receive chemotherapy treatment also patients with high grade, metastatic, recurrent tumors. The protein level of SOX9 was in line with our data on the SOX9 gene expression. Conclusion The simultaneous overexpression of local and circulating SOX9 in bone cancer besides its positive correlation with tumor severity, malignancy, size, and chemotherapy may deserve receiving more attention in bone cancer diagnosis and therapy.
Collapse
Key Words
- Benign bone tumors
- Bone cancer
- CPP, C - reactive protein test
- CSC marker
- CSC, cancer stem cell
- DAB, 3, 3′-diaminobenzidine
- ESR, erythrocyte sedimentation rate
- FBS, fasting blood sugar
- FOXO1, Forkhead Box O1
- FOXO3, Forkhead Box O3
- GCT, giant cell tumor
- HB, memoglobin
- LDL, low-density lipoprotein
- MSC, multipotent stem cells
- Malignant bone tumors
- OCT, optimal cutting temperature
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PMSF, phenylmethylsulfonyl fluoride
- PVDF, polyvinylidene difluoride
- RBC, red blood cell
- SEM, standard error mean
- SOX9
- SOX9, SRY-Box Transcription Factor 9
- WBC, white blood cells
Collapse
Affiliation(s)
- Ameinh Hosseini
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rampisheh
- Preventive Medicine and Public Health Research Center, Department of Community Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khademian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehrdad Bahrabadi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Ibrahimi
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
22
|
MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. J Hepatol 2020; 72:761-773. [PMID: 31837357 DOI: 10.1016/j.jhep.2019.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mucin 13 (MUC13) is reportedly overexpressed in human malignancies. However, the clinicopathological and biological significance of MUC13 in human intrahepatic cholangiocarcinoma (iCCA) remain unclear. The aim of this study was to define the role of MUC13 in the progression of iCCA. METHODS Expression levels of MUC13 in human iCCA samples were evaluated by immunohistochemistry, western blot, and real-time PCR. In vitro and in vivo experiments were used to assess the effect of MUC13 on iCCA cell growth and metastasis. Crosstalk between MUC13 and EGFR/PI3K/AKT signaling was analyzed by molecular methods. The upstream regulatory effects of MUC13 were evaluated by Luciferase and DNA methylation assays. RESULTS MUC13 was overexpressed in human iCCA specimens and iCCA cells. MUC13 overexpression positively correlated with clinicopathological characteristics of iCCA, such as vascular invasion and lymph node metastasis, and was independently associated with poor survival. Results from loss-of-function and gain-of-function experiments suggested that knockdown of MUC13 attenuated, while overexpression of MUC13 enhanced, the proliferation, motility, and invasiveness of iCCA cells in vitro and in vivo. Mechanistically, we found that the phosphatidylinositol 3-kinase-AKT signal pathway and its downstream effectors, such as tissue inhibitor of metalloproteinases 1 and matrix metallopeptidase 9, were required for MUC13-mediated tumor metastasis of iCCA. MUC13 interacted with epidermal growth factor receptor (EGFR) and subsequently activated the EGFR/PI3K/AKT signaling pathway by promoting EGFR dimerization and preventing EGFR internalization. We also found that MUC13 was directly regulated by miR-212-3p, whose downregulation was related to aberrant CpG hypermethylation in the promoter area. CONCLUSIONS These findings suggest that aberrant hypermethylation-induced downregulation of miR-212-3p results in overexpression of MUC13 in iCCA, leading to metastasis via activation of the EGFR/PI3K/AKT signaling pathway. LAY SUMMARY Mucin 13 overexpression has been implicated in the development of malignancies, although its role in intrahepatic cholangiocarcinoma has not been studied. Herein, we show that mucin 13 plays a critical role in intrahepatic cholangiocarcinoma. Mucin 13 could have therapeutic value both as a prognostic marker and as a treatment target.
Collapse
|
23
|
Dragomir MP, Kopetz S, Ajani JA, Calin GA. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 2020; 69:748-763. [PMID: 32034004 DOI: 10.1136/gutjnl-2019-318279] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Mihnea Paul Dragomir
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Adrian Calin
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Anfossi S, Calin GA. Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:356-370. [PMID: 33062956 PMCID: PMC7556722 DOI: 10.20517/cdr.2020.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of drug resistance represents the major cause of cancer therapy failure, determines disease progression and results in poor prognosis for cancer patients. Different mechanisms are responsible for drug resistance. Intrinsic genetic modifications of cancer cells induce the alteration of expression of gene controlling specific pathways that regulate drug resistance: drug transport and metabolism; alteration of drug targets; DNA damage repair; and deregulation of apoptosis, autophagy, and pro-survival signaling. On the other hand, a complex signaling network among the entire cell component characterizes tumor microenvironment and regulates the pathways involved in the development of drug resistance. Gut microbiota represents a new player in the regulation of a patient's response to cancer therapies, including chemotherapy and immunotherapy. In particular, commensal bacteria can regulate the efficacy of immune checkpoint inhibitor therapy by modulating the activation of immune responses to cancer. Commensal bacteria can also regulate the efficacy of chemotherapeutic drugs, such as oxaliplatin, gemcitabine, and cyclophosphamide. Recently, it has been shown that such bacteria can produce extracellular vesicles (EVs) that can mediate intercellular communication with human host cells. Indeed, bacterial EVs carry RNA molecules with gene expression regulatory ability that can be delivered to recipient cells of the host and potentially regulate the expression of genes involved in controlling the resistance to cancer therapy. On the other hand, host cells can also deliver human EVs to commensal bacteria and similarly, regulate gene expression. EV-mediated intercellular communication between commensal bacteria and host cells may thus represent a novel research area into potential mechanisms regulating the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
25
|
Tran AM, Chalbatani GM, Berland L, Cruz De Los Santos M, Raj P, Jalali SA, Gharagouzloo E, Ivan C, Dragomir MP, Calin GA. A New World of Biomarkers and Therapeutics for Female Reproductive System and Breast Cancers: Circular RNAs. Front Cell Dev Biol 2020; 8:50. [PMID: 32211400 PMCID: PMC7075436 DOI: 10.3389/fcell.2020.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most recently (re)discovered types of non-coding RNAs (ncRNA), circular RNAs (circRNAs) differentiate from other ncRNAs by a specific biogenesis, high stability, and distinct functions. The biogenesis of circRNAs can be categorized into three mechanisms that permit the back-splicing reaction: exon-skipping, pairing of neighboring introns, and dimerization of RNA-binding proteins. Regarding their stability, circRNAs have no free ends, specific to linear RNA molecules, prompting a longer half-life and resistance to exonuclease-mediated activity by RNase R, bypassing the common RNA turnover process. Regarding their functions, circular transcripts can be categorized into four broad roles: miRNA sponging, protein binding, regulation of transcription, and coding for proteins and peptides. Female reproductive system (including mainly ovarian, corpus, and cervix uteri cancers) and breast cancers are the primary causes of death in women worldwide, accounting for over 1,212,772 deaths in 2018. We consider that a better understanding of the molecular pathophysiology through the study of coding and non-coding RNA regulators could improve the diagnosis and therapeutics of these cancers. Developments in the field of circRNA in regard to breast or gynecological cancers are recent, with most circRNA-related discoveries having been made in the last 2 years. Therefore, in this review we summarize the newly detected roles of circRNAs in female reproductive system (cervical cancer, ovarian cancer, and endometrial cancer) and breast cancers. We argue that circRNAs can become essential elements of the diagnostic and therapeutic tools for female reproductive system cancers in the future.
Collapse
Affiliation(s)
- Anh M Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ghanbar Mahmoodi Chalbatani
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Lea Berland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyank Raj
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J, Cui Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019; 8:cells8121492. [PMID: 31766744 PMCID: PMC6953059 DOI: 10.3390/cells8121492] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive, prevalent, and distinct subtype of breast cancer characterized by high recurrence rates and poor clinical prognosis, devoid of both predictive markers and potential therapeutic targets. MicroRNAs (miRNA/miR) are a family of small, endogenous, non-coding, single-stranded regulatory RNAs that bind to the 3′-untranslated region (3′-UTR) complementary sequences and downregulate the translation of target mRNAs as post-transcriptional regulators. Dysregulation miRNAs are involved in broad spectrum cellular processes of TNBC, exerting their function as oncogenes or tumor suppressors depending on their cellular target involved in tumor initiation, promotion, malignant conversion, and metastasis. In this review, we emphasize on masses of miRNAs that act as oncogenes or tumor suppressors involved in epithelial–mesenchymal transition (EMT), maintenance of stemness, tumor invasion and metastasis, cell proliferation, and apoptosis. We also discuss miRNAs as the targets or as the regulators of dysregulation epigenetic modulation in the carcinogenesis process of TNBC. Furthermore, we show that miRNAs used as potential classification, prognostic, chemotherapy and radiotherapy resistance markers in TNBC. Finally, we present the perspective on miRNA therapeutics with mimics or antagonists, and focus on the challenges of miRNA therapy. This study offers an insight into the role of miRNA in pathology progression of TNBC.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Huan Gu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
27
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
28
|
Ediriweera MK, Cho SK. Targeting miRNAs by histone deacetylase inhibitors (HDACi): Rationalizing epigenetics-based therapies for breast cancer. Pharmacol Ther 2019; 206:107437. [PMID: 31715287 DOI: 10.1016/j.pharmthera.2019.107437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) belong to a group of short RNA molecules of ~22 nucleotides that play a significant role in the regulation of gene expression through post-transcriptional regulatory mechanisms. They can directly interact with their target mRNA molecules and induce target gene silencing. Many investigations over the past decade have revealed the involvement of different miRNAs in essential biological events. The expression of a considerable number of miRNAs is tightly regulated through epigenetic events such as histone modifications and DNA methylation. Notably, irregularities in these epigenetic events are associated with aberrant expression of miRNAs in a range of diseases including cancer. Impaired epigenetic events associated with aberrant expression of miRNAs can be pharmacologically modified using chromatin modifying drugs. Numerous pre-clinical and clinical data demonstrate that histone deacetylase inhibitors (HDACi) can re-establish the expression of aberrantly expressed miRNAs in a range of cancer types, rationalizing miRNAs as potential drug targets. This review highlights evidence from investigations assessing the effects of different classes of HDACi on miRNA expression in breast cancer (BC).
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
29
|
Talotta R, Sarzi-Puttini P, Laska MJ, Atzeni F. Retrotransposons shuttling genetic and epigenetic information from the nuclear to the mitochondrial compartment: Do they play a pathogenetic role in scleroderma? Cytokine Growth Factor Rev 2019; 49:42-58. [PMID: 31677967 DOI: 10.1016/j.cytogfr.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Endogenous retroelements are a class of ancient defective viral insertions contained in the genome of host cells, where they account for up to 40% of all DNA. Centuries of co-existence in host genome have led to the development of immunotolerance to endogenous retroelements, most of which are defective and unable to replicate or transcribe functional proteins. However, given their capacity to move across the nuclear and mitochondrial genome and recombine, they could mix phenotypes and give rise to infections that may trigger innate and adaptive immune responses by sensing receptors capable of recognising foreign nucleic acids and proteins. It has recently been suggested that they play a role in the pathogenesis of autoimmune diseases on the grounds of their partial reactivation or the epigenetic control of host gene transcription. A number of studies have confirmed their contribution to the development of rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus, but there is still a lack of data concerning systemic sclerosis (SSc). Their role in the pathogenesis of SSc can be hypothesised on the basis of mitochondrial and nuclear chromatinic damage, and hyper-activation of the immune pathway involved in antiviral defense. SSc is characterised by genetic and immunological evidence of a viral infection but, as no viral agent has yet been isolated from SSc patients, the hypothesis that partial reactivation of endogenous retroviruses may trigger the disease cannot be excluded and deserves further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, University Hospital ASST-Fatebenefratelli-Sacco, Via G.B Grassi 74, 20157 Milan, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| |
Collapse
|
30
|
Farooqi AA, Fuentes-Mattei E, Fayyaz S, Raj P, Goblirsch M, Poltronieri P, Calin GA. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Semin Cancer Biol 2019; 58:47-55. [PMID: 30742906 DOI: 10.1016/j.semcancer.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic abnormalities and aberrant expression of non-coding RNAs are two emerging features of cancer cells, both of which are responsible for deregulated gene expression. In this review, we describe the interplay between the two. Specific themes include epigenetic silencing of tumor suppressor miRNAs, epigenetic activation of oncogenic miRNAs, epigenetic aberrations caused by miRNAs, and naturally occurring compounds which modulate miRNA expression through epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Priyank Raj
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Goblirsch
- College of Science, Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Palmiro Poltronieri
- National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA), Via Lecce-Monteroni km 7, 73100 Lecce, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
32
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Epigenetics refers to processes that alter gene expression without altering primary DNA. Over that past decade, there is a growing focus on epigenetic mechanisms in cancer research and its importance in cancer biology. This review summarizes epigenetic dysregulation in bladder cancer. RECENT FINDINGS Epigenetic alterations are overall shared across various grades and stages of bladder cancer. High grade invasive tumors demonstrate a greater degree and intensity of methylation and may have a unique methylation pattern. Environmental exposures may influence epigenetic alterations directly independent of genomic change. Non-coding RNAs play an important role in cancer phenotype, especially in the context of integrative genomic analyses. DNA hypermethylation and non-coding RNAs have potential as robust bladder cancer biomarkers; however, they require further study and validation. Changes in chromatin and histone modification are attractive targets for therapy and are currently in clinical trials. Epigenetic dysregulation may be an important key in improving the understanding of bladder cancer pathogenesis, especially through integrative genomic analyses. Deeper understanding of these pathways can help identify clinically relevant biomarkers and therapeutic targets to validate for diagnosis, monitoring, prognosis, and treatment for bladder cancer.
Collapse
Affiliation(s)
- Sima P Porten
- Department of Urology, University of California San Francisco (UCSF), Mailbox Code 1695, 550 16th Street, 6th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
34
|
Adams BD, Arem H, Hubal MJ, Cartmel B, Li F, Harrigan M, Sanft T, Cheng CJ, Pusztai L, Irwin ML. Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Res Treat 2018; 170:55-67. [PMID: 29511965 PMCID: PMC6444907 DOI: 10.1007/s10549-018-4738-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Obesity and weight gain are associated with comorbidities including a higher risk of tumor recurrence and cancer-related deaths among breast cancer (BC) survivors; however, the underlying mechanisms linking obesity and cancer are poorly understood. Given the lack of clinically validated BC biomarkers, obesity and weight-loss studies utilize serum biomarkers as the intermediary outcomes of tumor recurrence. Studies have indicated microRNAs (miRNA)s are reliable biomarkers for cancer. We hypothesized that miRNA expression correlates with obesity and weight loss amongst BC survivors. This would yield insight into the biological pathways by which this association occurs, enabling more precise development of therapeutics. PATIENTS AND METHODS We correlated baseline body mass index (BMI) with serum miRNA expression in 121 BC survivors enrolled in the Hormones and Physical Exercise (HOPE) trial. We then analyzed expression of the 35 most abundant miRNAs from HOPE in a six-month randomized controlled weight-loss trial (Lifestyle, Exercise, and Nutrition; LEAN) in 100 BC survivors. Ingenuity pathway analysis (IPA) software was used to identify biological pathway targets of the BMI-associated and intervention-responsive miRNAs using predictive biomarkers. RESULTS Pearson correlations in HOPE identified eight miRNAs associated with BMI, including miR-191-5p (r = - 0.22, p = 0.016) and miR-122-5p (r = 0.25, p = 0.0048). In the LEAN validation study, levels of miR-191-5p significantly increased during the six-month intervention (p = 0.082). Ingenuity Pathway Analysis identified "Estrogen-mediated S-phase entry" (HOPE p = 0.003; LEAN p < 0.001) and "Molecular mechanisms of cancer" (HOPE p = 0.02; LEAN p < 0.001) as the top canonical pathways that significantly correlated with BMI-associated and intervention-responsive miRNAs and contain obesity and cancer-relevant genes including the E2F family of transcription factors and CCND1, which have been implicated in sporadic BC. CONCLUSION While the association between obesity and BC recurrence and mortality has been demonstrated in the literature, mechanisms underlying the link between weight gain and cancer are unclear. Using two independent clinical trials, we identified novel miRNAs associative to BMI and weight loss that contribute to the development of cancer. Predictive modeling of miRNA targets identified multiple canonical pathways associated with cancer, highlighting potential mechanisms explaining the link between BMI and increased cancer risk.
Collapse
Affiliation(s)
- Brian D Adams
- The RNA Institute, University at Albany State University of New York, Albany, NY, 12222, USA
- Investigative Medicine Program, Yale University Medical School, New Haven, CT, 06520, USA
- Department of RNA Sciences, The Brain Institute of America, Groton, CT, 06340, USA
| | - Hannah Arem
- Department of Epidemiology and Biostatistics, Milken Institute of Public Health George Washington University, Washington, DC, 20052, USA
| | - Monica J Hubal
- Department of Exercise and Nutrition Sciences, Milken Institute of Public Health George Washington University, Washington, DC, 20052, USA
| | | | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Tara Sanft
- Yale Medical Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, 06511, USA
| | - Christopher J Cheng
- Division of Nucleic Acid Technology, Alexion Pharmaceuticals, Cheshire, CT, 06410, USA
| | - Lajos Pusztai
- Yale Medical Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, 06511, USA
| | | |
Collapse
|
35
|
Current Insights into Oral Cancer Epigenetics. Int J Mol Sci 2018; 19:ijms19030670. [PMID: 29495520 PMCID: PMC5877531 DOI: 10.3390/ijms19030670] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Epigenetic modifications have emerged into one of the cancer hallmarks, replacing the concept of malignant pathologies as being solely genetic-based conditions. The epigenetic landscape is responsible for normal development but also for the heterogeneity among tissues in terms of gene expression patterns. Dysregulation in these mechanisms has been associated with disease stage, and increased attention is now granted to cancer in order to take advantage of these modifications in terms of novel therapeutic strategies or diagnosis/prognosis tools. Oral cancer has also been subjected to epigenetic analysis with numerous studies revealing that the development and progression of this malignancy are partially induced by an altered epigenetic substrate together with genetic alterations and prolonged exposure to environmental risk factors. The present review summarizes the most important epigenetic modifications associated with oral cancer and also their potential to be used as new therapeutic targets.
Collapse
|
36
|
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and over 80% of lung cancer patients are classified as having non-small cell lung cancer. Although there have been technological advancements in the early detection and standard treatment of lung cancer, it is often diagnosed at an advanced stage and is chemoresistant to most available drugs. A number of studies have demonstrated that microRNA is able to modulate various tumorigenic processes, including progression and metastasis, in various mechanisms. In this review we examine the most recent achievements in microRNA and lung cancer treatment and summarize the research progress on the reciprocal regulation between microRNA and epigenetic modifications, as both have been intensively studied in lung cancer. Epigenetic modifications on the human genome regulate gene and microRNA expression at the transcriptional level; inversely, microRNA can also transcriptionally cleave and/or translationally repress the expression of several key enzymes involved in epigenetic processes such as DNA methylation and histone modification. Better understanding of reciprocal regulation between microRNA and epigenetic modifications will underlie the development of novel microRNA orientated diagnostic and therapeutic strategies relating to lung cancer in the near future.
Collapse
Affiliation(s)
- Rajeev Kumar
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
37
|
Boulagnon-Rombi C, Schneider C, Leandri C, Jeanne A, Grybek V, Bressenot AM, Barbe C, Marquet B, Nasri S, Coquelet C, Fichel C, Bouland N, Bonnomet A, Kianmanesh R, Lebre AS, Bouché O, Diebold MD, Bellon G, Dedieu S. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget 2018; 9:8849-8869. [PMID: 29507659 PMCID: PMC5823651 DOI: 10.18632/oncotarget.24225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
LRP1 (low-density lipoprotein receptor-related protein 1), a multifunctional endocytic receptor, has recently been identified as a hub within a biomarker network for multi-cancer clinical outcome prediction. As its role in colon cancer has not yet been characterized, we here investigate the relationship between LRP1 and outcome. MATERIALS AND METHODS LRP1 mRNA expression was determined in colon adenocarcinoma and paired colon mucosa samples, as well as in stromal and tumor cells obtained after laser capture microdissection. Clinical potential was further investigated by immunohistochemistry in a population-based colon cancer series (n = 307). LRP1 methylation, mutation and miR-205 expression were evaluated and compared with LRP1 expression levels. RESULTS LRP1 mRNA levels were significantly lower in colon adenocarcinoma cells compared with colon mucosa and stromal cells obtained after laser capture microdissection. Low LRP1 immunohistochemical expression in adenocarcinomas was associated with higher age, right-sided tumor, loss of CDX2 expression, Annexin A10 expression, CIMP-H, MSI-H and BRAFV600E mutation. Low LRP1 expression correlated with poor clinical outcome, especially in stage IV patients. While LRP1 expression was downregulated by LRP1 mutation, LRP1 promoter was never methylated. CONCLUSIONS Loss of LRP1 expression is associated with worse colon cancer outcomes. Mechanistically, LRP1 mutation modulates LRP1 expression.
Collapse
Affiliation(s)
- Camille Boulagnon-Rombi
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| | - Chloé Leandri
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Albin Jeanne
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- SATT Nord, Lille, France
| | - Virginie Grybek
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | | | - Coralie Barbe
- Unité d’Aide Méthodologique, Centre Hospitalier Universitaire, Reims, France
| | - Benjamin Marquet
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Saviz Nasri
- CRB Tumorothèque de Champagne-Ardenne, Reims, France
| | | | - Caroline Fichel
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Nicole Bouland
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Arnaud Bonnomet
- Plateforme d’Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Reza Kianmanesh
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Anne-Sophie Lebre
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | - Olivier Bouché
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Marie-Danièle Diebold
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Georges Bellon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire, Reims, France
| | - Stéphane Dedieu
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| |
Collapse
|
38
|
Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
39
|
Nilendu P, Kumar A, Kumar A, Pal JK, Sharma NK. Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack. Int J Cancer 2018; 142:7-17. [PMID: 28722143 DOI: 10.1002/ijc.30898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are found in many cancer types, including breast carcinoma. Breast cancer stem cells (BCSCs) are considered as seed of cancer formation and they are associated with metastasis and genotoxic drug resistance. Several studies highlighted the presence of BCSCs in tumor microenvironment and they are accentuated with several carcinoma events including metastasis and resistance to genotoxic drugs and they also rebound after genotoxic burn. Stemness properties of a small population of cells in carcinoma have provided clues regarding the role of tumor microenvironment in tumor pathophysiology. Hence, insights in cancer stem cell biology with respect to molecular signaling, genetics and epigenetic behavior of CSCs have been used to modulate tumor drug resistance due to genotoxic drugs and signaling protein inhibitors. This review summarizes major scientific breakthroughs in understanding the contribution of BCSCs towards tumor's capability to endure destruction inflicted by molecular as well as genotoxic drugs.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Ajay Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| |
Collapse
|
40
|
Zhou L, Li Z, Pan X, Lai Y, Quan J, Zhao L, Xu J, Xu W, Guan X, Li H, Yang S, Gui Y, Lai Y. Identification of miR-18a-5p as an oncogene and prognostic biomarker in RCC. Am J Transl Res 2018; 10:1874-1886. [PMID: 30018727 PMCID: PMC6038077 DOI: pmid/30018727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND RCC is a malignant tumor that originates from renal tubular epithelial cells, accounting for nearly 90% of renal malignancies and 3% of adult malignancies. It was reported that more than 30-40% of patients with early localized RCC still have recurrence and metastasis after receiving radical surgery. miRNAs are an endogenous non-coding small RNAs that play an important role in the regulation of tumor cell proliferation, differentiation and apoptosis. METHODS In our study, RT-qPCR, CCK-8 assay, wound scratch assay, transwell assay and flow cytometry assay were designed to identify the expression and functions of miR-18a-5p in RCC. Moreover, we collected the survival data from The Cancer Genome Atlas to predict and clarify the prognostic functions of miR-18a-5p in RCC. The correlation between miR-18a-5p expression and clinicopathological variables or overall survival was analyzed by 42 formalin-fixed paraffin-embedded (FFPE) renal cancer samples. RESULTS The expression of miR-18a-5p in RCC tissues and cell lines was elevated. Further researches suggested that upregulation of miR-18a-5p had a positive effect on RCC cell proliferation, migration, invasion and inhibition of apoptosis, while down-regulation of miR-18a-5p neutralized the effect. In addition, Data of TCGA and prognostic analysis of FFPE RCC samples revealed that high miR-18a-5p expression patients had significantly poorer survival. CONCLUSIONS These results demonstrated that miR-18a-5p functioned as an oncogene and prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Zuwei Li
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Shantou University Medical CollegeShantou 515041, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yulin Lai
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| |
Collapse
|
41
|
Folate and microRNA: Bidirectional interactions. Clin Chim Acta 2017; 474:60-66. [PMID: 28882489 DOI: 10.1016/j.cca.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
Abstract
Low folate status is linked to increased risk of a number of conditions, including developmental disorders, some cancers, neurodegenerative and cardiovascular diseases. Some of the mechanisms of these associations are known, but much remains to be elucidated. Aberrant microRNA (miRNA) profiles are also signatures of these conditions, and as such, the association between folate status and miRNA are now being investigated. Potential associations are bidirectional, with miRNA linked to regulation of folate-mediated pathways, and folate linked to modulation of miRNA expression. miRNA are short non-coding RNA, involved in post-transcriptional regulation of gene expression via complementary binding to mRNA. Evidence is emerging that links folate levels to the regulation of miRNA levels, and miRNA to the regulation of the expression of enzymes involved in folate mediated one carbon metabolism. One carbon metabolism is the source of methyl groups for methylation reactions, including DNA methylation and is important in DNA synthesis and repair. miRNA may be modulated by DNA methylation and other epigenetic mechanisms directly, or indirectly via modulation of upstream signalling pathways. As such, there may be bi-directional associations between folate status and miRNA profiles. miRNA may also act as biomarkers for diagnosis or prognosis of conditions associated with folate status.
Collapse
|
42
|
Abstract
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research toward identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism, various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely toward uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster, and D. rerio, do not develop cancers but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating preclinical efficacy of microRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Arpita S Pal
- PULSe Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Andrea L Kasinski
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
43
|
Diagnóstico y prevención de la cardiotoxicidad inducida por fármacos antineoplásicos: de la imagen a las tecnologías «ómicas». Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2016.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S, Tavakkoly-Bazzaz J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 2017; 24:233-243. [PMID: 28574057 DOI: 10.1038/cgt.2017.16] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Cancer is one of the leading cause of death in the world with the prevalence of >10 million mortalities annually. Current cancer treatments include surgical intervention, radiation, and taking chemotherapeutic drugs, which often kill the healthy cells and result in toxicity in patients. Therefore, researchers are looking for ways to be able to eliminate just cancerous cells. Intra-tumor heterogeneity of cancerous cells is the main obstacle on the way of an effective cancer treatment. However, better comprehension of molecular basis of tumor and the advent of new diagnostic technologies can help to improve the treatment of various cancers. Therefore, study of epigenetic changes, gene expression of cancerous cells and employing methods that enable us to correct or minimize these changes is critically important. In this paper, we will review the recent advanced strategies being used in the field of cancer research.
Collapse
Affiliation(s)
- M A Zaimy
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - N Saffarzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Mohammadi
- Center of Excellence for Biodiversity, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - H Pourghadamyari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - P Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Sarli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - L K Moghaddam
- Department of Developmental Cell Biology, School of Biological Sciences, Azad University, Tehran North Branch, Tehran, Iran
| | - S R Paschepari
- Department of Developmental Cell Biology, School of Biological Sciences, Azad University, Tehran North Branch, Tehran, Iran
| | - H Azizi
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, Iran
| | - S Torkamandi
- Department of Medical Genetics and immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - J Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Kumar A, Sarode SC, Sarode GS, Majumdar B, Patil S, Sharma NK. Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17701463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Gargi S Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
46
|
Madonna R. Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics" Technologies. ACTA ACUST UNITED AC 2017; 70:576-582. [PMID: 28246019 DOI: 10.1016/j.rec.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States.
| |
Collapse
|
47
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
48
|
Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez-Aguayo C, Fuentes-Mattei E, Xiao L, Vannini I, Redis RS, D'Abundo L, Zhang X, Nicoloso MS, Rossi S, Gonzalez-Villasana V, Rupaimoole R, Ferracin M, Morabito F, Neri A, Ruvolo PP, Ruvolo VR, Pecot CV, Amadori D, Abruzzo L, Calin S, Wang X, You MJ, Ferrajoli A, Orlowski R, Plunkett W, Lichtenberg TM, Davuluri RV, Berindan-Neagoe I, Negrini M, Wistuba II, Kantarjian HM, Sood AK, Lopez-Berestein G, Keating MJ, Fabbri M, Calin GA. Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res 2016; 23:2891-2904. [PMID: 27903673 DOI: 10.1158/1078-0432.ccr-16-1025] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors.Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia.Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo We show that anti-miR-155-DOPC can be considered non-toxic in vivo We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer.Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891-904. ©2016 AACR.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l. IRCCS, Unit of Gene Therapy, Meldola (FC) 47014, Italy
| | - Tetsuro Setoyama
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ivan Vannini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l. IRCCS, Unit of Gene Therapy, Meldola (FC) 47014, Italy
| | - Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lucilla D'Abundo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milena S Nicoloso
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vianey Gonzalez-Villasana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Departamento de Biologia Celular y Genetica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza, Nuevo Leon, Mexico
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna 40126, Italy
| | | | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milano and Hematology, Ospedale Policlinico, Milano 20122, Italy
| | - Peter P Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivian R Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chad V Pecot
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dino Amadori
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l. IRCCS, Unit of Gene Therapy, Meldola (FC) 47014, Italy
| | - Lynne Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tara M Lichtenberg
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ramana V Davuluri
- Department of Preventive Medicine - Division of Health and Biomedical Informatics, Northwestern University - Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, The Oncology Institute, 400015 Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 400012 Cluj-Napoca, Romania
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muller Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Saban
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
50
|
Afgar A, Fard-Esfahani P, Mehrtash A, Azadmanesh K, Khodarahmi F, Ghadir M, Teimoori-Toolabi L. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition. Cancer Biol Ther 2016; 17:1126-1138. [PMID: 27668319 PMCID: PMC5137492 DOI: 10.1080/15384047.2016.1235657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/31/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023] Open
Abstract
It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3'UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% ± 0.41%, 43% ± 0.42 and 64% ± 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.
Collapse
Affiliation(s)
- Ali Afgar
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Farnaz Khodarahmi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdis Ghadir
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|