1
|
Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Hüner NPA. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. PLANT, CELL & ENVIRONMENT 2022; 45:156-177. [PMID: 34664276 DOI: 10.1111/pce.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xi Zhang
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Benzaquen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Nina Malczewski
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - David R Smith
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Khadka J, Yadav NS, Granot G, Grafi G. Seasonal Growth of Zygophyllum dumosum Boiss.: Summer Dormancy Is Associated with Loss of the Permissive Epigenetic Marker Dimethyl H3K4 and Extensive Reduction in Proteins Involved in Basic Cell Functions. PLANTS 2018; 7:plants7030059. [PMID: 30011962 PMCID: PMC6161207 DOI: 10.3390/plants7030059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 02/01/2023]
Abstract
Plants thriving in desert environments are suitable for studying mechanisms for plant survival under extreme seasonal climate variation. We studied epigenetic mechanisms underlying seasonal growth cycles in the desert plant Zygophyllum dumosum Boiss., which was previously shown to be deficient in repressive markers of di-methyl and tri-methyl H3K9 and their association with factors regulating basic cell functions. We showed a contingent association between rainfall and seasonal growth and the epigenetic marker of dimethyl H3K4, which disappears upon entry into the dry season and the acquisition of a dormant state. DNA methylation is not affected by a lack of H3K9 di-methyl and tri-methyl. Changes in methylation can occur between the wet and dry season. Proteome analysis of acid soluble fractions revealed an extensive reduction in ribosomal proteins and in proteins involved in chloroplasts and mitochondrial activities during the dry seasons concomitantly with up-regulation of molecular chaperone HSPs. Our results highlight mechanisms underlying Z. dumosum adaptation to seasonal climate variation. Particularly, summer dormancy is associated with a loss of the permissive epigenetic marker dimethyl H3K4, which might facilitate genome compaction concomitantly with a significant reduction in proteins involved in basic cell functions. HSP chaperones might safeguard the integrity of cell components.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Narendra S Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
3
|
Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genet 2016; 12:e1005824. [PMID: 26815787 PMCID: PMC4729485 DOI: 10.1371/journal.pgen.1005824] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. In this paper we report a relatively simple mechanism by which plant chloroplasts deal with inactive forms of DXS, the main rate-determining enzyme for the production of plastidial isoprenoids relevant for photosynthesis and development. We provide evidence supporting that particular members of the Hsp100 chaperone family contribute to either refold or degrade inactive DXS proteins specifically recognized by the J-protein adaptor J20 and delivered to Hsp70 chaperones. Our results also unveil a J-protein-based mechanism for substrate delivery to the Clp complex, the main protease in the chloroplast stroma. Together, this work allows a better understanding of how chloroplasts get rid of damaged DXS (and potentially other proteins), which should contribute to take more informed decisions in future approaches aimed to manipulate the levels of plastidial metabolites of interest (including vitamins, biofuels, or drugs against cancer and malaria) in crop plants.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus UAB Bellaterra, Barcelona, Spain
| | | | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Segal N, Shapira M. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:850-860. [PMID: 25892083 DOI: 10.1111/tpj.12855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
HSP33 was originally identified in bacteria as a redox-sensitive chaperone that protects unfolded proteins from aggregation. Here, we describe a eukaryote ortholog of HSP33 from the green algae Chlamydomonas reinhardtii, which appears to play a protective role under light-induced oxidizing conditions. The algal HSP33 exhibits chaperone activity, as shown by citrate synthase aggregation assays. Studies from the Jakob laboratory established that activation of the bacterial HSP33 upon its oxidation initiates by the release of pre-bound Zn from the well conserved Zn-binding motif Cys-X-Cys-Xn -Cys-X-X-Cys, and is followed by significant structural changes (Reichmann et al., ). Unlike the bacterial protein, the HSP33 from C. reinhardtii had lost the first cysteine residue of its center, diminishing Zn-binding activity under all conditions. As a result, the algal protein can be easily activated by minor structural changes in response to oxidation and/or excess heat. An attempt to restore the missing first cysteine did not have a major effect on Zn-binding and on the mode of activation. Replacement of all remaining cysteines abolished completely any residual Zn binding, although the chaperone activation was maintained. A phylogenetic analysis of the algal HSP33 showed that it clusters with the cyanobacterial protein, in line with its biochemical localization to the chloroplast. Indeed, expression of the algal HSP33 increases in response to light-induced oxidative stress, which is experienced routinely by photosynthetic organisms. Despite the fact that no ortholog could be found in higher eukaryotes, its abundance in all algal species examined could have a biotechnological relevance.
Collapse
Affiliation(s)
- Na'ama Segal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
5
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
6
|
Doron L, Segal N, Gibori H, Shapira M. The BSD2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:345-55. [PMID: 25124725 DOI: 10.1111/tpj.12638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 05/13/2023]
Abstract
The expression of the CO2 -fixation enzyme ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which is affected by light, involves the cysteine-rich protein bundle-sheath defective-2 (BSD2) that was originally identified in maize bundle-sheath cells. We identified the BSD2 ortholog in Chlamydomonas reinhardtii as a small protein (17 kDa) localized to the chloroplast. The algal BSD2-ortholog contains four CXXCXGXG DnaJ-like elements, but lacks the other conserved domains of DnaJ. BSD2 co-migrated with the rbcL transcript on heavy polysomes, and both BSD2 and rbcL mRNA shifted to the lighter fractions under oxidizing conditions that repress the translation of the Rubisco large subunit (RbcL). This profile of co-migration supports the possibility that BSD2 is required for the de novo synthesis of RbcL. Furthermore, BSD2 co-migrated with the rbcL transcript in a C. reinhardtii premature-termination mutant that encodes the first 60 amino acids of RbcL. In both strains, BSD2 shared its migration profile with the rbcL transcript but not with psbA mRNA. The chaperone activity of BSD2 was exemplified by its ability to prevent the aggregation of both citrate synthase (CS) and RbcL in vitro following their chemical denaturation. This activity did not depend on the presence of the thiol groups on BSD2. In contrast, the activity of BSD2 in preventing the precipitation of reduced β-chains in vitro in the insulin turbidity assay was thiol-dependent. We conclude that BSD2 combines a chaperone 'holdase' function with the ability to interact with free thiols, with both activities being required to protect newly synthesized RbcL chains.
Collapse
Affiliation(s)
- Lior Doron
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel
| | | | | | | |
Collapse
|
7
|
In vitro characterization of bacterial and chloroplast Hsp70 systems reveals an evolutionary optimization of the co-chaperones for their Hsp70 partner. Biochem J 2014; 460:13-24. [PMID: 24564700 DOI: 10.1042/bj20140001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chloroplast Hsp70 (heat-shock protein of 70 kDa) system involved in protein folding in Chlamydomonas reinhardtii consists of HSP70B, the DnaJ homologue CDJ1 and the GrpE-type nucleotide-exchange factor CGE1. The finding that HSP70B needs to be co-expressed with HEP2 (Hsp70 escort protein 2) to become functional allowed the reconstitution of the chloroplast Hsp70 system in vitro and comparison with the homologous Escherichia coli system. Both systems support luciferase refolding and display ATPase and holdase activities. Steady-state activities are low and strongly stimulated by the co-chaperones, whose concentrations need to be balanced to optimally support luciferase refolding. Although the co-chaperones of either system generally stimulate ATPase and folding-assistance activities of the other, luciferase refolding is reduced ~10-fold and <2-fold if either Hsp70 is supplemented with the foreign DnaJ and GrpE protein respectively, suggesting an evolutionary specialization of the co-chaperones for their Hsp70 partner. Distinct features are that HSP70B's steady-state ATPase exhibits ~20-fold higher values for Vmax and Km and that the HSP70B system displays a ~6-fold higher folding assistance on denatured luciferase. Although truncating up to 16 N-terminal amino acids of CGE1 does not affect HSP70B's general ATPase and folding-assistance activities in the physiological temperature range, further deletions hampering dimerization of CGE1 via its N-terminal coiled coil do.
Collapse
|
8
|
Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, Park YI, Lee SY, Pai HS. Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. THE PLANT CELL 2013; 25:3944-60. [PMID: 24151298 PMCID: PMC3877821 DOI: 10.1105/tpc.113.111096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 05/20/2023]
Abstract
Angiosperms require light for chlorophyll biosynthesis because one reaction in the pathway, the reduction of protochlorophyllide (Pchlide) to chlorophyllide, is catalyzed by the light-dependent protochlorophyllide oxidoreductase (POR). Here, we report that Cell growth defect factor1 (Cdf1), renamed here as chaperone-like protein of POR1 (CPP1), an essential protein for chloroplast development, plays a role in the regulation of POR stability and function. Cdf1/CPP1 contains a J-like domain and three transmembrane domains, is localized in the thylakoid and envelope membranes, and interacts with POR isoforms in chloroplasts. CPP1 can stabilize POR proteins with its holdase chaperone activity. CPP1 deficiency results in diminished POR protein accumulation and defective chlorophyll synthesis, leading to photobleaching and growth inhibition of plants under light conditions. CPP1 depletion also causes reduced POR accumulation in etioplasts of dark-grown plants and as a result impairs the formation of prolamellar bodies, which subsequently affects chloroplast biogenesis upon illumination. Furthermore, in cyanobacteria, the CPP1 homolog critically regulates POR accumulation and chlorophyll synthesis under high-light conditions, in which the dark-operative Pchlide oxidoreductase is repressed by its oxygen sensitivity. These findings and the ubiquitous presence of CPP1 in oxygenic photosynthetic organisms suggest the conserved nature of CPP1 function in the regulation of POR.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Ji-Young Song
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Young Jun Jung
- Division of Applied Life Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique, Université Joseph Fourier LBFA, BP53F 38041 Grenoble cedex 9 France
| | - Youn-Il Park
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
9
|
Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013; 14:237-48. [PMID: 23463216 DOI: 10.1038/nrm3542] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.
Collapse
|
10
|
Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene 2013; 516:184-9. [DOI: 10.1016/j.gene.2012.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/19/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
|
11
|
Petitjean C, Moreira D, López-García P, Brochier-Armanet C. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea. BMC Evol Biol 2012. [PMID: 23181628 PMCID: PMC3564930 DOI: 10.1186/1471-2148-12-226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.
Collapse
Affiliation(s)
- Céline Petitjean
- UPR CNRS 9043, Laboratoire de Chimie Bactérienne, Université d’Aix-Marseille (AMU), 13402 Marseille, Cedex 20, France
| | | | | | | |
Collapse
|
12
|
Schmollinger S, Strenkert D, Offeddu V, Nordhues A, Sommer F, Schroda M. A protocol for the identification of protein-protein interactions based on 15N metabolic labeling, immunoprecipitation, quantitative mass spectrometry and affinity modulation. J Vis Exp 2012:4083. [PMID: 23051728 PMCID: PMC3490270 DOI: 10.3791/4083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protein-protein interactions are fundamental for many biological processes in the cell. Therefore, their characterization plays an important role in current research and a plethora of methods for their investigation is available1. Protein-protein interactions often are highly dynamic and may depend on subcellular localization, post-translational modifications and the local protein environment2. Therefore, they should be investigated in their natural environment, for which co-immunoprecipitation approaches are the method of choice3. Co-precipitated interaction partners are identified either by immunoblotting in a targeted approach, or by mass spectrometry (LC-MS/MS) in an untargeted way. The latter strategy often is adversely affected by a large number of false positive discoveries, mainly derived from the high sensitivity of modern mass spectrometers that confidently detect traces of unspecifically precipitating proteins. A recent approach to overcome this problem is based on the idea that reduced amounts of specific interaction partners will co-precipitate with a given target protein whose cellular concentration is reduced by RNAi, while the amounts of unspecifically precipitating proteins should be unaffected. This approach, termed QUICK for QUantitative Immunoprecipitation Combined with Knockdown4, employs Stable Isotope Labeling of Amino acids in Cell culture (SILAC)5 and MS to quantify the amounts of proteins immunoprecipitated from wild-type and knock-down strains. Proteins found in a 1:1 ratio can be considered as contaminants, those enriched in precipitates from the wild type as specific interaction partners of the target protein. Although innovative, QUICK bears some limitations: first, SILAC is cost-intensive and limited to organisms that ideally are auxotrophic for arginine and/or lysine. Moreover, when heavy arginine is fed, arginine-to-proline interconversion results in additional mass shifts for each proline in a peptide and slightly dilutes heavy with light arginine, which makes quantification more tedious and less accurate5,6. Second, QUICK requires that antibodies are titrated such that they do not become saturated with target protein in extracts from knock-down mutants. Here we introduce a modified QUICK protocol which overcomes the abovementioned limitations of QUICK by replacing SILAC for 15N metabolic labeling and by replacing RNAi-mediated knock-down for affinity modulation of protein-protein interactions. We demonstrate the applicability of this protocol using the unicellular green alga Chlamydomonas reinhardtii as model organism and the chloroplast HSP70B chaperone as target protein7 (Figure 1). HSP70s are known to interact with specific co-chaperones and substrates only in the ADP state8. We exploit this property as a means to verify the specific interaction of HSP70B with its nucleotide exchange factor CGE19.
Collapse
|
13
|
Abstract
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.
Collapse
|