1
|
1,5-Disubstituted Acylated 2-Amino-4,5-dihydroimidazoles as a New Class of Retinoic Acid Receptor-Related Orphan Receptor (ROR) Inhibitors. Int J Mol Sci 2022; 23:ijms23084433. [PMID: 35457251 PMCID: PMC9029089 DOI: 10.3390/ijms23084433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
A growing body of evidence suggests a pathogenic role for pro-inflammatory T helper 17 cells (Th17) in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type I diabetes, and psoriasis-diseases for which no curative treatment is currently available. The nuclear retinoic acid receptor-related orphan receptors alpha and gamma (RORα/γ), in particular the truncated isoform RORγt that is specifically expressed in the thymus, play a critical role in the activation of a pro-inflammatory Th17 response, and RORγ inverse agonists have shown promise as negative regulators of Th17 for the treatment of autoimmune diseases. Our study underscores the screening of a large combinatorial library of 1,5-disubstituted acylated 2-amino-4,5-dihydroimidazoles using a demonstrated synthetic and screening approach and the utility of the positional scanning libraries strategy for the rapid identification of a novel class of ROR inhibitors. We identified compound 1295-273 with the highest activity against RORγ (3.3 µM IC50) in this series, and almost a two-fold selectivity towards this receptor isoform, with 5.3 and 5.8 µM IC50 against RORα and RORβ cells, respectively.
Collapse
|
2
|
Russell RP, Fu Y, Liu Y, Maye P. Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage. Stem Cell Res 2018; 30:85-95. [PMID: 29807258 PMCID: PMC6083448 DOI: 10.1016/j.scr.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
We have investigated the differentiation of paraxial mesoderm from mouse embryonic stem cells utilizing a Tbx6-EYFP/Brachyury (T)-Cherry dual reporter system. Differentiation from the mouse ESC state directly into mesoderm via Wnt pathway activation was low, but augmented by treatment with AGN193109, a pan-retinoic acid receptor inverse agonist. After five days of differentiation, T+ cells increased from 12.2% to 18.8%, Tbx6+ cells increased from 5.8% to 12.7%, and T+/Tbx6+ cells increased from 2.4% to 14.1%. The synergism of AGN193109 with Wnt3a/CHIR99021 was further substantiated by the increased expression of paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, and Hoxb1. Separate to inverse agonist treatment, when mouse ESCs were indirectly differentiated into mesoderm via a transient epiblast step the efficiency of paraxial mesoderm formation markedly increased. Tbx6+ cells represented 65-75% of the total cell population after just 3 days of differentiation and the expression of paraxial mesoderm marker genes Tbx6 and Msgn increased over 100-fold and 300-fold, respectively. Further evaluation of AGN193109 treatment on the indirect differentiation protocol suggested that RARs have two distinct roles. First, AGN193109 treatment at the epiblast step and mesoderm step promoted paraxial mesoderm formation over other mesoderm and endoderm lineage types. Second, continued treatment during mesoderm formation revealed its ability to repress the maturation of presomitic mesoderm into somitic paraxial mesoderm. Thus, the continuous treatment of AGN193109 during epiblast and mesoderm differentiation steps yielded a culture where ~90% of the cells were Tbx6+. The surprisingly early effect of inverse agonist treatment at the epiblast step of differentiation led us to further examine the effect of AGN193109 treatment during an extended epiblast differentiation protocol. Interestingly, while inverse agonist treatment had no impact on the conversion of ESCs into epiblast cells based on the expression of Rex1, Fgf5, and pluripotency marker genes Oct4, Nanog, and Sox2, after three days of differentiation in the presence of AGN193109 caudal epiblast and early paraxial mesoderm marker genes, T, Cyp26a1, Fgf8, Tbx6 and Msgn were all highly up-regulated. Collectively, our studies reveal an earlier than appreciated role for RARs in epiblast cells and the modulation of their function via inverse agonist treatment can promote their differentiation into the paraxial mesoderm lineage.
Collapse
Affiliation(s)
- Ryan P Russell
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States.
| |
Collapse
|
3
|
Yin L, Agustinus AS, Yuvienco C, Minashima T, Schnabel NL, Kirsch T, Montclare JK. Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules 2018; 19:1614-1624. [PMID: 29601728 DOI: 10.1021/acs.biomac.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) results from degenerative and abnormal function of joints, with localized biochemistry playing a critical role in its onset and progression. As high levels of all- trans retinoic acid (ATRA) in synovial fluid have been identified as a contributive factor to OA, the synthesis of de novo antagonists for retinoic acid receptors (RARs) has been exploited to interrupt the mechanism of ATRA action. BMS493, a pan-RAR inverse agonist, has been reported as an effective inhibitor of ATRA signaling pathway; however, it is unstable and rapidly degrades under physiological conditions. We employed an engineered cartilage oligomeric matrix protein coiled-coil (CccS) protein for the encapsulation, protection, and delivery of BMS493. In this study, we determine the binding affinity of CccS to BMS493 and the stimulator, ATRA, via competitive binding assay, in which ATRA exhibits approximately 5-fold superior association with CccS than BMS493. Interrogation of the structure of CccS indicates that ATRA causes about 10% loss in helicity, while BMS493 did not impact the structure. Furthermore, CccS self-assembles into nanofibers when bound to BMS493 or ATRA as expected, displaying 11-15 nm in diameter. Treatment of human articular chondrocytes in vitro reveals that CccS·BMS493 demonstrates a marked improvement in efficacy in reducing the mRNA levels of matrix metalloproteinase-13 (MMP-13), one of the main proteases responsible for the degradation of the extracellular cartilage matrix compared to BMS493 alone in the presence of ATRA, interleukin-1 beta (IL-1β), or IL-1 β together with ATRA. These results support the feasibility of utilizing coiled-coil proteins as drug delivery vehicles for compounds of relatively limited bioavailability for the potential treatment of OA.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Albert S Agustinus
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Nicole L Schnabel
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States.,Department of Chemistry , New York University , New York , New York 10003 , United States.,Department of Biomaterials , NYU College of Dentistry , New York , New York 10010 , United States.,Department of Biochemistry , SUNY Downstate Medical Center , Brooklyn , New York 11203 , United States
| |
Collapse
|
4
|
Gutierrez-Mazariegos J, Nadendla EK, Studer RA, Alvarez S, de Lera AR, Kuraku S, Bourguet W, Schubert M, Laudet V. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150484. [PMID: 27069642 PMCID: PMC4821253 DOI: 10.1098/rsos.150484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Eswar Kumar Nadendla
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Romain A. Studer
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI)—Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Susana Alvarez
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
5
|
Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP. Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 2015; 27:495-508. [PMID: 26109319 DOI: 10.1681/asn.2014111108] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) has been used therapeutically to reduce injury and fibrosis in models of AKI, but little is known about the regulation of this pathway and what role it has in regulating injury and repair after AKI. In these studies, we show that RA signaling is activated in mouse and zebrafish models of AKI, and that these responses limit the extent of injury and promote normal repair. These effects were mediated through a novel mechanism by which RA signaling coordinated the dynamic equilibrium of inflammatory M1 spectrum versus alternatively activated M2 spectrum macrophages. Our data suggest that locally synthesized RA represses proinflammatory macrophages, thereby reducing macrophage-dependent injury post-AKI, and activates RA signaling in injured tubular epithelium, which in turn promotes alternatively activated M2 spectrum macrophages. Because RA signaling has an essential role in kidney development but is repressed in the adult, these findings provide evidence of an embryonic signaling pathway that is reactivated after AKI and involved in reducing injury and enhancing repair.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| | | | | | | | | | | | | | | | - Haichun Yang
- Pathology, Vanderbilt University, Nashville, Tennessee
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veteran Affairs Tennessee Valley Health Authority, Nashville, Tennessee; and
| | | | | | | | - Neil A Hukriede
- Departments of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| |
Collapse
|
6
|
Delfosse V, Maire AL, Balaguer P, Bourguet W. A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin 2015; 36:88-101. [PMID: 25500867 DOI: 10.1038/aps.2014.133] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples.
Collapse
|
7
|
Martínez C, Lieb M, Álvarez S, Rodríguez-Barrios F, Álvarez R, Khanwalkar H, Gronemeyer H, de Lera AR. Dual RXR Agonists and RAR Antagonists Based on the Stilbene Retinoid Scaffold. ACS Med Chem Lett 2014; 5:533-7. [PMID: 24900875 DOI: 10.1021/ml400521f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/19/2014] [Indexed: 01/24/2023] Open
Abstract
Arotinoids containing a C5,C8-diphenylnaphthalene-2-yl ring linked to a (C3-halogenated) benzoic acid via an ethenyl connector (but not the corresponding naphthamides), which are prepared by Horner-Wadsworth-Emmons reaction of naphthaldehydes and benzylphosphonates, display the rather unusual property of being RXR agonists (15-fold induction of the RXR reporter cell line was achieved at 3- to 10-fold lower concentration than 9-cis-retinoic acid) and RAR antagonists as shown by transient transactivation studies. The binding of such bulky ligands suggests that the RXR ligand-binding domain is endowed with some degree of structural elasticity.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Michele Lieb
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Susana Álvarez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Fátima Rodríguez-Barrios
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Rosana Álvarez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Harshal Khanwalkar
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Hinrich Gronemeyer
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Angel R. de Lera
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| |
Collapse
|
8
|
Al Tanoury Z, Piskunov A, Andriamoratsiresy D, Gaouar S, Lutzing R, Ye T, Jost B, Keime C, Rochette-Egly C. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts. J Cell Sci 2014; 127:521-33. [PMID: 24357724 DOI: 10.1242/jcs.131946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
le Maire A, Bourguet W. Retinoic acid receptors: structural basis for coregulator interaction and exchange. Subcell Biochem 2014; 70:37-54. [PMID: 24962880 DOI: 10.1007/978-94-017-9050-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the form of heterodimers with retinoid X receptors (RXRs), retinoic acid receptors (RARs) are master regulators of gene expression in humans and important drug targets. They act as ligand-dependent transcription factors that regulate a large variety of gene networks controlling cell growth, differentiation, survival and death. The biological functions of RARs rely on a dynamic series of coregulator exchanges controlled by ligand binding. Unliganded RARs exert a repressor activity by interacting with transcriptional corepressors which themselves serve as docking platforms for the recruitment of histone deacetylases that impose a higher order structure on chromatin which is not permissive to gene transcription. Upon ligand binding, the receptor undergoes conformational changes inducing corepressor release and the recruitment of coactivators with histone acetylase activities allowing chromatin decompaction and gene transcription. In the following, we review the structural determinants of the interaction between RAR and either type of coregulators both at the level of the individual receptor and in the context of the RAR-RXR heterodimers. We also discuss the molecular details of the fine tuning of these associations by the various pharmacological classes of ligands.
Collapse
Affiliation(s)
- Albane le Maire
- Inserm U1054, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090, Montpellier, France,
| | | |
Collapse
|
10
|
Gericke J, Ittensohn J, Mihály J, Álvarez S, Álvarez R, Töröcsik D, de Lera ÁR, Rühl R. Regulation of retinoid-mediated signaling involved in skin homeostasis by RAR and RXR agonists/antagonists in mouse skin. PLoS One 2013; 8:e62643. [PMID: 23638129 PMCID: PMC3634743 DOI: 10.1371/journal.pone.0062643] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/22/2013] [Indexed: 12/23/2022] Open
Abstract
Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used topical application of selective agonists and antagonists for retinoic acid receptors (RARs) α and γ and retinoid-X receptors (RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RARγ and RXR. ATRA and the RARγ agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1) and the chemokines Ccl17 and Ccl22. In contrast, a RARα agonist strongly decreased the expression of ATRA-synthesis enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RARα and RARγ subtypes possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin. We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RARα and/or RARγ may promote skin-based inflammation and dysregulation of skin barrier properties.
Collapse
Affiliation(s)
- Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Jan Ittensohn
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Susana Álvarez
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | - Rosana Álvarez
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | - Dániel Töröcsik
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Ángel R. de Lera
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- Paprika Bioanalytics BT, Debrecen, Hungary
- Apoptosis and Genomics Research Group of the Hungarian Academy of Science, Debrecen, Hungary
| |
Collapse
|
11
|
Ivanova D, Gronemeyer H, de Lera AR. Design and Stereoselective Synthesis of Retinoids with Ferrocene or N-Butylcarbazole Pharmacophores that Induce Post-Differentiation Apoptosis in Acute Promyelocytic Leukemia Cells. ChemMedChem 2011; 6:1518-29. [DOI: 10.1002/cmdc.201100065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/04/2011] [Indexed: 11/10/2022]
|
12
|
Alvarez S, Bourguet W, Gronemeyer H, de Lera AR. Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opin Ther Pat 2011; 21:55-63. [PMID: 21091043 DOI: 10.1517/13543776.2011.536531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IMPORTANCE OF THE FIELD Retinoids are currently used in the clinic for the treatment of skin diseases and acute promielocytic leukemia and are known to contribute to early development and organogenesis in embryo and throughout life. Most of these activities are primarily due to the binding of the retinoid to the retinoic acid receptors (RARs, subtypes α, β and γ). Ligand modulates, via allosteric conformational changes, the ability of RARs to interact with different sets of co-regulators. Structure-based insights on the ligand-binding domain of the ligand-bound RARs have clearly linked retinoid function to co-activator (CoA) recruitment for agonists, CoA dissociation for antagonists and corepressor stabilization for inverse agonists. AREAS COVERED IN THIS REVIEW To help understand ligand-modulated RAR action as a consequence of its interaction with different sets of co-regulators, we present the chemical engineering of subsets of retinoid chemotypes (rexinoids, i.e., the ligands of the retinoid X receptors, α, β and γ, with impact in the treatment of cancer and metabolic diseases, are not covered) that display the whole range of ligand functions, including subtype- and isotype-selectivities. WHAT THE READER WILL GAIN An understanding of the correlation of retinoid ligand structure and function. Structural insights into ligand action and retinoid chemotypes. Potential for clinical application of retinoid receptor modulators. TAKE HOME MESSAGE Potential pharmacological/therapeutic applications of these chemical tools extend beyond cancer prevention and therapy to the treatment of autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | |
Collapse
|