1
|
Angeles-Floriano T, Rivera-Torruco G, García-Maldonado P, Juárez E, Gonzalez Y, Parra-Ortega I, Vilchis-Ordoñez A, Lopez-Martinez B, Arriaga-Pizano L, Orozco-Ruíz D, Torres-Nava JR, Licona-Limón P, López-Sosa F, Bremer A, Alvarez-Arellano L, Valle-Rios R. Cell surface expression of GRP78 and CXCR4 is associated with childhood high-risk acute lymphoblastic leukemia at diagnostics. Sci Rep 2022; 12:2322. [PMID: 35149705 PMCID: PMC8837614 DOI: 10.1038/s41598-022-05857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guadalupe Rivera-Torruco
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Paulina García-Maldonado
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Israel Parra-Ortega
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Armando Vilchis-Ordoñez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco López-Sosa
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Alhelí Bremer
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico.
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
2
|
Integrin-Linked Kinase Links Integrin Activation to Invadopodia Function and Invasion via the p(T567)-Ezrin/NHERF1/NHE1 Pathway. Int J Mol Sci 2021; 22:ijms22042162. [PMID: 33671549 PMCID: PMC7926356 DOI: 10.3390/ijms22042162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor cell invasion depends largely on degradation of the extracellular matrix (ECM) by protease-rich structures called invadopodia, whose formation and activity requires the convergence of signaling pathways engaged in cell adhesion, actin assembly, membrane regulation and ECM proteolysis. It is known that β1-integrin stimulates invadopodia function through an invadopodial p(T567)-ezrin/NHERF1/NHE1 signal complex that regulates NHE1-driven invadopodia proteolytic activity and invasion. However, the link between β1-integrin and this signaling complex is unknown. In this study, in metastatic breast (MDA-MB-231) and prostate (PC-3) cancer cells, we report that integrin-linked kinase (ILK) integrates β1-integrin with this signaling complex to regulate invadopodia activity and invasion. Proximity ligation assay experiments demonstrate that, in invadopodia, ILK associates with β1-integrin, NHE1 and the scaffold proteins p(T567)-ezrin and NHERF1. Activation of β1-integrin increased both invasion and invadopodia activity, which were specifically blocked by inhibition of either NHE1 or ILK. We conclude that ILK integrates β1-integrin with the ECM proteolytic/invasion signal module to induce NHE1-driven invadopodial ECM proteolysis and cell invasion.
Collapse
|
3
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Wang LC. Excretory/secretory products of Angiostrongylus cantonensis fifth-stage larvae induce endoplasmic reticulum stress via the Sonic hedgehog pathway in mouse astrocytes. Parasit Vectors 2020; 13:317. [PMID: 32552877 PMCID: PMC7301976 DOI: 10.1186/s13071-020-04189-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is an important food-borne zoonotic parasite. Humans are non-permissive hosts, and this parasite develops into fifth-stage larvae (L5) in the brain and subarachnoid cavity and then induces eosinophilic meningitis and eosinophilic meningoencephalitis. Excretory/secretory products (ESPs) are valuable targets for the investigation of host-parasite interactions. These products contain a wide range of molecules for penetrating defensive barriers and avoiding the immune response of the host. Endoplasmic reticulum (ER) stress has been found to be associated with a wide range of parasitic infections and inflammation. ER stress can increase cell survival via the activation of downstream signalling. However, the mechanisms of ER stress in A. cantonensis infection have not yet been clarified. This study was designed to investigate the molecular mechanisms of ER stress in astrocytes after treatment with the ESPs of A. cantonensis L5. RESULTS The results demonstrated that A. cantonensis infection activated astrocytes in the mouse hippocampus and induced the expression of ER stress-related molecules. Next, the data showed that the expression of ER stress-related molecules and the Ca2+ concentration were significantly increased in activated astrocytes after treatment with the ESPs of L5 of A. cantonensis. Ultimately, we found that ESPs induced GRP78 expression via the Sonic hedgehog (Shh) signalling pathway. CONCLUSIONS These findings suggest that in astrocytes, the ESPs of A. cantonensis L5 induce ER stress and that the Shh signalling pathway plays an important role in this process.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan.
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Molecular chaperones in tumors of salivary glands. J Mol Histol 2020; 51:109-115. [PMID: 32300923 DOI: 10.1007/s10735-020-09871-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
The salivary glands are key components of the mouth and play a central role in its physiology. Their importance may be appreciated considering their number, occurrence in pairs, and distribution in the mouth: two parotids, two submandibular, two sublingual, and many other small ones scattered throughout the mouth. They produce saliva, without which ingestion of non-liquid nutrients and speech would be practically impossible. Nevertheless, the physiology and pathology of salivary glands are poorly understood. For instance, tumors of salivary glands occur, and their incidence is on the rise, but their etiology and pathogenesis are virtually unknown, although some risk factors have been identified. Likewise, the role of the chaperoning system in the development, normal functioning, and pathology, including carcinogenesis, remains to be determined. This scarcity of basic knowledge impedes progress in diagnosis, disease monitoring, and therapeutics of salivary gland tumors. We are currently involved in examining the chaperoning system of human salivary glands and we performed a search of the literature to determine what has been reported relating to oncology. We found data pertaining to six components of the chaperone system, namely HSP27, HSP60, HSP70, HSP84, HSP86, and GRP78, and to another HSP, the heme-oxygenase H-O1, also named HSP32, which does not belong in the chaperoning system but seemed to have potential as a biomarker for diagnostic purposes as much as the HSP/chaperones mentioned above. The reported quantitative variations of the six chaperones were distinctive enough to distinguish malignant from benign tumors, suggesting that these molecules hold potential as biomarkers useful in differential diagnosis. Also, the quantitative variations described accompanying tumor development, as observed in cancers of other organs, encourages research to elucidate whether chaperones play a role in the initiation and/or progression of salivary gland tumors.
Collapse
|
5
|
Abstract
LC3-associated phagocytosis, a distinct form of autophagy, plays a key role in antigen presentation. Autophagy itself plays a central role in the regulation of cellular metabolism. Proteins that regulate autophagy include the AMPK which senses high levels of AMP, and mTOR, which integrates amino acid and fatty acid metabolism with autophagy. More recently, autophagy has been demonstrated to regulate tumor cell immunogenicity via the degradation of histone deacetylase proteins. Individual drugs and drug combinations that activate the ATM-AMPK pathway and inactivate mTOR, cause autophagosome formation. The maturation of autophagosomes into autolysosomes causes the autophagic degradation of histone deacetylase proteins who regulate the transcription of PD-L1, Class I MHCA, ODC and IDO1. Indeed, drug combinations that do not contain an HDAC inhibitor can nevertheless act as de facto HDAC inhibitors, via autophagic degradation of HDAC proteins. Such drug combinations simultaneously kill tumor cells via immunogenic autophagy and in parallel opsonize tumor cells to checkpoint inhibitor immunotherapies via reduced expression of PD-L1, ODC and IDO1, and increased expression of Class I MHCA.
Collapse
|
6
|
Gkouveris I, Nikitakis NG, Aseervatham J, Ogbureke KUE. The tumorigenic role of DSPP and its potential regulation of the unfolded protein response and ER stress in oral cancer cells. Int J Oncol 2018; 53:1743-1751. [PMID: 30015841 DOI: 10.3892/ijo.2018.4484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 11/05/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is upregulated in various human cancers, including head and neck squamous cell carcinoma. Cancer cells are commonly found under constant endoplasmic reticulum (ER) stress and exhibit increased levels of misfolded proteins, due to gene mutations and a stressful microenvironment. The present study examined the effects of DSPP silencing on the regulation of ER stress and the unfolded protein response (UPR) in oral cancer cells. A recently established stable DSPP short hairpin (sh)RNA-silenced OSC2 oral cancer cell line was used. The mRNA expression levels of ER stress-associated proteins, including 78 kDa glucose-regulated protein (GRP78), sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3r), protein kinase R-like endoplasmic reticulum kinase (PERK), serine/threonine-protein kinase/endoribonuclease IRE1 (IRE1), activating transcription factor 6 (ATF6) and matrix metalloproteinase 20 (MMP20), were assessed by reverse transcription-quantitative polymerase chain reaction. The expression levels of apoptosis-related [B‑cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax) and cytochrome c] and cell proliferation-related [proliferating cell nuclear antigen (PCNA)] proteins were analyzed by western blotting. Cell viability, apoptosis and migration were monitored by MTT assay, Annexin V-fluorescein isothiocyanate flow cytometry and wound-healing assay, respectively. In transiently transfected puromycin‑free OSC2 cells, DSPP silencing markedly downregulated the mRNA expression levels of major ER stress regulators, including GRP78, SERCA2b, PERK, IRE1 and ATF6, as well as MMP20. DSPP silencing also resulted in decreased cell viability and migration, and enhanced apoptosis. Furthermore, PCNA and Bcl2 levels were decreased, whereas Bax and cytochrome c protein levels were increased in DSPP-silenced OSC2 cells. Sustained puromycin treatment partially counteracted the effects of DSPP silencing on the mRNA expression levels of ER stress-related proteins and MMP20, and on the migratory capacity of OSC2 cells. However, following puromycin treatment of DSPP-silenced cells, cell viability was further reduced and apoptosis was enhanced. In conclusion, these data provide evidence to suggest that DSPP may be involved in ER stress mechanisms in oral squamous cell carcinoma, since its downregulation in OSC2 cells led to significant alterations in the levels of major ER stress-associated proteins, and subsequent collapse of the UPR system.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kalu U E Ogbureke
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
7
|
Ambrose AJ, Santos EA, Jimenez PC, Rocha DD, Wilke DV, Beuzer P, Axelrod J, Kumar Kanduluru A, Fuchs PL, Cang H, Costa-Lotufo LV, Chapman E, La Clair JJ. Ritterostatin G N 1 N , a Cephalostatin-Ritterazine Bis-steroidal Pyrazine Hybrid, Selectively Targets GRP78. Chembiochem 2017; 18:506-510. [PMID: 28074539 PMCID: PMC5562448 DOI: 10.1002/cbic.201600669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 01/25/2023]
Abstract
Natural products discovered by using agnostic approaches, unlike rationally designed leads or those obtained through high-throughput screening, offer the ability to reveal new biological pathways and, hence, serve as an important vehicle to unveil new avenues in drug discovery. The ritterazine-cephalostatin family of natural products displays robust and potent antitumor activities, with sub-nanomolar growth inhibition against multiple cell lines and potent activity in xenograft models. Herein, we used comparative cellular and molecular biological methods to uncover the ritterazine-cephalostatin cytotoxic mode of action (MOA) in human tumor cells. Our findings indicated that, whereas ritterostatin GN 1N , a cephalostatin-ritterazine hybrid, binds to multiple HSP70s, its cellular trafficking confines activity to the endoplasmic reticulum (ER)-based HSP70 isoform, GRP78. This targeting results in activation of the unfolding protein response (UPR) and subsequent apoptotic cell death.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P. O. Box 210207, Tuscon, AZ, 85721, USA
| | - Evelyne A Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Paula C Jimenez
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
- Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11.070-100, Brazil
| | - Danilo D Rocha
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Diego V Wilke
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Paolo Beuzer
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Josh Axelrod
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ananda Kumar Kanduluru
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Present address: On Target Laboratories, 1281 Win Hentschel Boulevard, West Lafayette, IN, 47907, USA
| | - Philip L Fuchs
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hu Cang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Letícia V Costa-Lotufo
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P. O. Box 210207, Tuscon, AZ, 85721, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1052, USA
| |
Collapse
|
8
|
Moon JY, Cho SK. Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells. Molecules 2016; 21:molecules21070914. [PMID: 27428937 PMCID: PMC6272843 DOI: 10.3390/molecules21070914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Nobiletin, a major component of citrus fruits, is a polymethoxyflavone derivative that exhibits anticancer activity against several forms of cancer, including SNU-16 human gastric cancer cells. To explore the nobiletin-induced cell death mechanism, we examined the changes in protein expression caused by nobiletin in human gastric cancer SNU-16 cells by means of two-dimensional gel electrophoresis (2-DGE), followed by peptide mass fingerprinting (PMF) analysis. Seventeen of 20 selected protein spots were successfully identified, including nine upregulated and eight downregulated proteins. In nobiletin-treated SNU-16 cells the glucose-regulated protein 78 kDa (GRP78) mRNA level was induced most significantly among six proteins related to cell survival and death. Western blot analysis was used to confirm the expression of GRP78 protein. We detected increases in the levels of the ER-stress related proteins inositol requiring enzyme 1 alpha (IRE1-α), activating transcription factor 4 (ATF-4), and C/EBP homology protein (CHOP), as well as GRP78, in response to nobiletin in SNU-16 cells. Furthermore, the ER stress-mediated apoptotic protein caspase-4 was proteolytically activated by nobiletin. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in SNU-16 cells, as evidenced by decreased cell viability, an increased number of sub-G1 phase cells and increased levels of cleaved PARP. Our results suggest that nobiletin-induced apoptosis in SNU-16 cells is mediated by pathways involving intracellular ER stress-mediated protective autophagy. Thus, the combination of nobiletin and an autophagy inhibitor could be a promising treatment for gastric cancer patients.
Collapse
Affiliation(s)
- Jeong Yong Moon
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea.
| | - Somi Kim Cho
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
9
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
10
|
Activation of Sonic Hedgehog Leads to Survival Enhancement of Astrocytes via the GRP78-Dependent Pathway in Mice Infected with Angiostrongylus cantonensis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:674371. [PMID: 25961032 PMCID: PMC4415671 DOI: 10.1155/2015/674371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/16/2015] [Indexed: 01/28/2023]
Abstract
Angiostrongylus cantonensis infection may cause elevation of ROS and antioxidants in the CSF of infected mice. Astrocytes may protect the surrounding neurons from oxidative stress-induced cell death by secreting Sonic hedgehog (Shh) via the PI3-K/AKT/Bcl-2 pathway. This study was conducted to determine the role of the Shh signaling pathway in A. cantonensis-infected BABL/c mice by coculturing astrocytes with living fifth-stage larvae or soluble antigens. The Shh pathway was activated with corresponding increases in the level of the Shh. Glial fibrillary acidic protein (GFAP) and Shh were increased in astrocyte cocultured with living fifth-stage larvae or soluble antigens. The survival of astrocytes pretreated with Shh was significantly elevated in cocultures with the antigens but reduced by its inhibitor cyclopamine. The expression of GRP78 and Bcl-2 was significantly higher in astrocytes pretreated with recombinant Shh. These findings suggest that the expression of Shh may inhibit cell death by activating Bcl-2 through a GRP78-dependent pathway.
Collapse
|
11
|
Kuo LJ, Huang CY, Cheng WL, Hung CS, Wu CT, Lin FY, Chang YJ, Huang MT. Glucose-regulated protein 78 mediates the anticancer efficacy of shikonin in hormone-refractory prostate cancer cells. Tumour Biol 2015; 36:5063-70. [DOI: 10.1007/s13277-015-3157-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
|
12
|
Pi L, Li X, Song Q, Shen Y, Lu X, DI B. Knockdown of glucose-regulated protein 78 abrogates chemoresistance of hypopharyngeal carcinoma cells to cisplatin induced by unfolded protein in response to severe hypoxia. Oncol Lett 2013; 7:685-692. [PMID: 24527073 PMCID: PMC3919852 DOI: 10.3892/ol.2013.1753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/29/2013] [Indexed: 11/29/2022] Open
Abstract
Hypoxia renders tumor cells with reduced sensitivity and increased resistance to chemotherapeutic agents. One of the possible mechanisms underlying this unfavorable status is activation of the unfolded protein response (UPR) under hypoxic conditions, due to the upregulation of glucose-regulated protein 78 (GRP78) expression. GRP78, an endoplasmic reticulum chaperone protein and a key regulator of the UPR, has been reported to be overexpressed in various types of cancer. However, the role of GRP78 in regulating the cell growth and apoptosis of hypopharyngeal carcinoma cells, with regard to the severity of hypoxia, remains unclear. Therefore, the aim of the present study was to investigate whether, and under what circumstances, GRP78 is associated with hypoxia-induced chemoresistance in hypopharyngeal carcinoma. For this purpose, cells from the FaDu human hypopharyngeal carcinoma cell line were cultured under normoxic and hypoxic conditions for different time periods. No significant changes in GRP78 and C/EBP homology protein (CHOP) protein expression levels were revealed under moderately hypoxic conditions (oxygen concentration, 1%), but these levels were changed over time under severely hypoxic conditions (oxygen concentration, <0.02%). This indicated that severe hypoxia, rather than moderate hypoxia, leads to UPR activation in hypopharyngeal carcinoma cells. Knockdown of GRP78 with short hairpin RNA inhibited cell proliferation and promoted apoptosis under severely hypoxic conditions, even with cisplatin treatment, indicating that GRP78 confers FaDu cells resistant to chemotherapy in response to severe hypoxia. Furthermore, knockdown of GRP78 resulted in a significant increase in CHOP and Bax expression levels and a decrease in Bcl-2 expression levels with simultaneous increase in the levels of apoptosis under severely hypoxic conditions. It was concluded that severe hypoxia leads to UPR activation and elevation of GRP78 expression, promoting cell survival and inducing chemoresistance. Silencing of GRP78 may block the pro-survival arm of UPR, simultaneously promoting proapoptotic signaling through induction of CHOP. Downregulation of GRP78 may be a promising strategy for overcoming the resistance of hypopharyngeal cancer to chemotherapy.
Collapse
Affiliation(s)
- Lihong Pi
- Department of Otorhinolaryngology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China ; Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Xiaoming Li
- Department of Otorhinolaryngology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China ; Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Qi Song
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Yupeng Shen
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Xiuying Lu
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Bin DI
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| |
Collapse
|
13
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Matsuo K, Gray MJ, Yang DY, Srivastava SA, Tripathi PB, Sonoda LA, Yoo EJ, Dubeau L, Lee AS, Lin YG. The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol 2012. [PMID: 23200913 DOI: 10.1016/j.ygyno.2012.11.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Currently, accurately identifying endometrial cancer patients at high risk for recurrence remains poor. To ascertain if changes in the endoplasmic reticulum (ER) stress marker, glucose-regulated-protein-78 (GRP78) can serve as a prognosticator in endometrial cancer, we examined GRP78 expression in patient samples to determine its association with clinical outcome. METHODS A retrospective cohort study was conducted in endometrial cancer patients. Archived specimens of visceral adipocytes and paired endometrial tumors were analyzed by immunohistochemistry for GRP78 and another ER stress marker, C/EBP homologous protein (CHOP). Expression of these markers was correlated with clinico-pathological information and outcomes. RESULTS GRP78 expression in visceral adipocytes was detected in 95% of the 179 endometrial cancer patients with analyzable visceral adipocytes. Within individual samples, 24% of adipocytes (range, 0-90%, interquartile range 18%-38%) exhibited GRP78 expression. High visceral adipocyte GRP78 expression positively correlated with advanced-stage disease (p=0.007) and deep myometrial invasion (p=0.004). High visceral adipocyte GRP78 expression was significantly associated with decreased disease-free survival (DFS) in multivariate analyses (hazard ratio 2.88, 95% CI 1.37-6.04, p=0.005). CHOP expression paralleled the GRP78 expression in adipocytes (r=0.55, p<0.001) and in the tumor (p=0.018). CONCLUSIONS Our study demonstrates that the ER stress markers, GRP78 and CHOP, are elevated in endometrial cancer patients. Furthermore, GRP78 expression levels in visceral adipocytes from these patients were significantly correlated to disease stage and patient survival. Our results demonstrate, for the first time, that the GRP78 levels in endometrial cancer patients may be a prognosticator and aid with clinical risk stratification and focused surveillance.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin P, Chen F, Yang Y, Song Y, Li X, Lan X, Jin Y, Wang A. GRP78 expression and immunohistochemical localization in the female reproductive tract of mice. Theriogenology 2012; 78:1824-9. [DOI: 10.1016/j.theriogenology.2012.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
|
16
|
Hardy B, Raiter A, Yakimov M, Vilkin A, Niv Y. Colon cancer cells expressing cell surface GRP78 as a marker for reduced tumorigenicity. Cell Oncol (Dordr) 2012; 35:345-54. [PMID: 22945507 DOI: 10.1007/s13402-012-0094-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The glucose regulated heat shock protein 78 (GRP78) is a central regulator of ER (endoplasmic reticulum) stress due to its pro-survival property. Up regulated GRP78 expression in tumor cells has been correlated with aggressive malignancies whereas some reports have predicted an improved prognosis. Over-expression of GRP78 in the ER promotes its localization to the cell surface on several cell types including tumor cells. METHODS In order to elucidate whether GRP78 receptor positive and negative tumor cells manifest different properties in colorectal cancer, we first artificially separated GRP78 positive and negative sub-populations from HM7 and HCT116 cell lines using anti GRP78 antibody coated magnetic beads. RESULTS Only GRP78 negative cells were highly proliferative, induced significant growth in tumor size in nude mice and metastasized to the liver in a human metastatic colorectal carcinoma model in mice. In contrast, GRP78 positive cells manifested reduced proliferation, colony formation, tumor growth and liver metastases. The reduced tumorigenicity of GRP78 positive subpopulation was abrogated by silencing GRP78 expression using siRNA oligomers. In our efforts to induce cell surface GRP78, we subjected the cells to doxorubicin and taxol that increased significantly the percent of GRP78 positive population. Cells pre-incubated with doxorubicin exhibited reduced proliferation and tumor growth in mice. CONCLUSION This study demonstrates the significance of cell surface GRP78 in colon cancer, which may be used as a marker for reduced tumorigenicity.
Collapse
Affiliation(s)
- Britta Hardy
- Felsenstein Medical Research Center, Tel-Aviv University Sackler School of Medicine, Rabin Medical Center, Beilinson Campus, Petach Tikva, 49100, Israel.
| | | | | | | | | |
Collapse
|
17
|
Booth L, Cazanave SC, Hamed HA, Yacoub A, Ogretmen B, Chen CS, Grant S, Dent P. OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing. Cancer Biol Ther 2012; 13:224-36. [PMID: 22354011 DOI: 10.4161/cbt.13.4.18877] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have further defined mechanism(s) by which the drug OSU-03012 (OSU) kills tumor cells. OSU lethality was suppressed by knock down of PERK and enhanced by knock down of ATF6 and IRE1α. OSU treatment suppressed expression of the chaperone, BiP/GRP78, and did so through reduced stability of the protein. Knock down of BiP/GRP78 further enhanced OSU lethality. Overexpression of BiP/GRP78 abolished OSU toxicity. Pre-treatment of cells with OSU enhanced radiosensitivity to a greater extent than concomitant or sequential drug treatment with radiation exposure. Expression of a mutant active p110 PI3K, or mutant active forms of the EGFR in GBM cells did not differentially suppress OSU killing. In contrast loss of PTEN function reduced OSU lethality, without altering AKT, p70 S6K or mTOR activity, or the drug's ability to radiosensitize GBM cells. Knock down of PTEN protected cells from OSU and radiation treatment whereas re-expression of PTEN facilitated drug lethality and radiosensitization. In a dose-dependent fashion OSU prolonged the survival of mice carrying GBM tumors and interacted with radiotherapy to further prolong survival. Collectively, our data show that reduced BiP/GRP78 levels play a key role in OSU-3012 toxicity in GBM cells, and that this drug has in vivo activity against an invasive primary human GBM isolate.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Expressions of GRP78 and Bax associate with differentiation, metastasis, and apoptosis in non-small cell lung cancer. Mol Biol Rep 2012; 39:6753-61. [PMID: 22297694 DOI: 10.1007/s11033-012-1500-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to detect the expressions of GRP78 and Bax in human non-small cell lung cancer (NSCLC) tissues, to analyze their correlations with carcinogenesis and the development of NSCLC, and to investigate the relationship of GRP78 expression to metastasis and apoptosis in the NSCLC cell line HCC827. The positive expression rates of GRP78 and Bax in NSCLC lung tissues were 59.7% and 34.7% by RT-PCR, respectively. The mRNA and protein expression levels of GRP78 in NSCLC tissues were significantly higher than that in the relatively normal surrounding lung tissues (p < 0.05); the lesser the degree of tumor differentiation was, the higher the mRNA and protein expression levels of GRP78 were (p < 0.05). The mRNA and protein expression levels of GRP78 from patients in advanced pathological stages (III-IV) were significantly higher than the corresponding levels in patients in early pathological stages (I-II) (p < 0.05); the mRNA and protein expression levels of GRP78 in patients with positive lymph node metastasis were significantly higher than those in patients with negative lymph node metastasis (p < 0.05). The mRNA and protein expression levels of Bax in the above cases showed the opposite trend of the mRNA and protein expression levels of GRP78. However, the mRNA and protein expression levels of both GRP78 and Bax were independent of the patient’s sex, the patient’s age, the tumor size and the histological type (adenocarcinoma or squamous cell carcinoma) of NSCLC (p > 0.05). The mRNA expression level of GRP78 and the mRNA expression level of Bax in human NSCLC tissues were negatively correlated (r = -0.353, p = 0.002). After transfection of GRP78 siRNA in HCC827 cells, the GRP78 protein expression level was significantly decreased (p < 0.01), while the Bax protein expression level was significantly increased (p < 0.01); the number of cells that passed through the Transwell chamber was significantly less in the non-transfected control group compared to the transfected control group (p < 0.01). The number of apoptotic cells was significantly greater in the non-transfected control group compared to the transfected control group (p < 0.01). The expression levels of GRP78 and Bax were related to the carcinogenesis, development and metastasis of NSCLC. GRP78 expression with siRNA interference in the human NSCLC cell line HCC827 can reduce metastasis and promote apoptosis in HCC827 cells.
Collapse
|