1
|
Moser M, Groves NR, Meier I. The Arabidopsis KASH protein SINE3 is involved in male and female gametogenesis. PLANT REPRODUCTION 2024; 37:521-534. [PMID: 39285059 PMCID: PMC11511747 DOI: 10.1007/s00497-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
KEY MESSAGE The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely affecting the first post-meiotic mitosis in both cases, and is required for full seed set. Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female gametophytes. Loss of SINE3 results in a female-derived seed set defect, with sine3 mutant ovules arresting at stage FG1. Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition, sine3 mutants have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first post-meiotic nuclear division in both cases.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Institute of Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Thompson MEH, Raizada MN. Protocols to enable fluorescence microscopy of microbial interactions on living maize silks (style tissue). J Microbiol Methods 2024; 225:107027. [PMID: 39214401 DOI: 10.1016/j.mimet.2024.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
There is interest in studying microbes that colonize maize silks (style tissue, critical for reproduction) including the fungal pathogen Fusarium graminearum (Fg) and its interactions with the microbiome and biocontrol agents. In planta imaging of these interactions on living silks using confocal fluorescence microscopy would provide key insights. However, newly discovered microbes have unknown effects on human health, and there are regulatory requirements to prevent the release of fluorescently tagged microbes into the environment. Therefore, the microbe infection, colonization, and interaction stages on silks prior to microscopy must be contained. At the same time, silk viability must be maintained and experiments conducted that are biologically relevant (e.g. silks should remain attached to the cob), yet the silk tissue must be accessible to the researcher (i.e. not within husk leaves) and allow for multiple replicates. Here we present methods that meet these five contrasting criteria. We tested these methods using Fg and four silk-derived bacterial endophytes. The endophytes were previously known to have anti-Fg activity in vitro, but in planta observations were lacking. In Method 1, a portion of the tip of a cob was dissected, and silks remained attached to the cob in a Petri dish. The cob was placed on a water agar disc to maintain hydration. DsRed-tagged bacteria and GFP-tagged Fg were inoculated onto the silks and incubated, allowing the two microbes to grow towards one another before staining with propidium iodide for confocal microscopy. A variation of the protocol was presented in Method 2, where detached silk segments were placed directly on water agar where they were inoculated with bacteria and Fg to promote dense colonization, and to allow for many replicates and interventions such as silk wounding. The bacterial endophytes were successfully observed colonizing Fg hyphae, silk trichomes, and entering silks via cut ends and wounds. These protocols can be used to study other silk-associated microbes including several globally important fungal pathogens that enter maize grain through silks.
Collapse
Affiliation(s)
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
3
|
Biel A, Moser M, Groves NR, Meier I. Distinct Roles for KASH Proteins SINE1 and SINE2 in Guard Cell Actin Reorganization, Calcium Oscillations, and Vacuolar Remodeling. FRONTIERS IN PLANT SCIENCE 2022; 13:784342. [PMID: 35599883 PMCID: PMC9120628 DOI: 10.3389/fpls.2022.784342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca2+) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca2+ oscillations are diminished in sine2-1 but not sine1-1, and this defect can be rescued by both exogenous Ca2+ and F-actin depolymerization. We show first evidence for nuclear Ca2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1. Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Nguyen TV, Gupta R, Annas D, Yoon J, Kim YJ, Lee GH, Jang JW, Park KH, Rakwal R, Jung KH, Min CW, Kim ST. An Integrated Approach for the Efficient Extraction and Solubilization of Rice Microsomal Membrane Proteins for High-Throughput Proteomics. FRONTIERS IN PLANT SCIENCE 2021; 12:723369. [PMID: 34567038 PMCID: PMC8460067 DOI: 10.3389/fpls.2021.723369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The preparation of microsomal membrane proteins (MPs) is critically important to microsomal proteomics. To date most research studies have utilized an ultracentrifugation-based approach for the isolation and solubilization of plant MPs. However, these approaches are labor-intensive, time-consuming, and unaffordable in certain cases. Furthermore, the use of sodium dodecyl sulfate (SDS) and its removal prior to a mass spectrometry (MS) analysis through multiple washing steps result in the loss of proteins. To address these limitations, this study introduced a simple micro-centrifugation-based MP extraction (MME) method from rice leaves, with the efficacy of this approach being compared with a commercially available plasma membrane extraction kit (PME). Moreover, this study assessed the subsequent solubilization of isolated MPs in an MS-compatible surfactant, namely, 4-hexylphenylazosulfonate (Azo) and SDS using a label-free proteomic approach. The results validated the effectiveness of the MME method, specifically in the enrichment of plasma membrane proteins as compared with the PME method. Furthermore, the findings showed that Azo demonstrated several advantages over SDS in solubilizing the MPs, which was reflected through a label-free quantitative proteome analysis. Altogether, this study provided a relatively simple and rapid workflow for the efficient extraction of MPs with an Azo-integrated MME approach for bottom-up proteomics.
Collapse
Affiliation(s)
- Truong Van Nguyen
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of General Education, College of General Education, Kookmin University, Seoul, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan, South Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Department of Life Science & Environmental Biochemistry, Pusan National University, Miryang, South Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan, South Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
5
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
6
|
Islam MS, Van Nguyen T, Sakamoto W, Takagi S. Phototropin- and photosynthesis-dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1352-1371. [PMID: 31961050 DOI: 10.1111/jipb.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue-light-dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue-light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop-and-go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma-membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2- and photosynthesis-dependent signals. The present study might add novel regulatory mechanism for light-dependent plant organelle interactions.
Collapse
Affiliation(s)
- Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Toan Van Nguyen
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
- Agricultural Genetics Institute, National Key Laboratory for Plant Cell Biotechnology, Pham Van Dong road, Bac Tu Liem district, Ha Noi, Vietnam
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
7
|
Role of Proton Motive Force in Photoinduction of Cytoplasmic Streaming in Vallisneria Mesophyll Cells. PLANTS 2020; 9:plants9030376. [PMID: 32197471 PMCID: PMC7154820 DOI: 10.3390/plants9030376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
In mesophyll cells of the aquatic monocot Vallisneria, red light induces rotational cytoplasmic streaming, which is regulated by the cytoplasmic concentration of Ca2+. Our previous investigations revealed that red light induces Ca2+ efflux across the plasma membrane (PM), and that both the red light-induced cytoplasmic streaming and the Ca2+ efflux are sensitive to vanadate, an inhibitor of P-type ATPases. In this study, pharmacological experiments suggested the involvement of PM H+-ATPase, one of the P-type ATPases, in the photoinduction of cytoplasmic streaming. We hypothesized that red light would activate PM H+-ATPase to generate a large H+ motive force (PMF) in a photosynthesis-dependent manner. We demonstrated that indeed, photosynthesis increased the PMF and induced phosphorylation of the penultimate residue, threonine, of PM H+-ATPase, which is a major activation mechanism of H+-ATPase. The results suggested that a large PMF generated by PM H+-ATPase energizes the Ca2+ efflux across the PM. As expected, we detected a putative Ca2+/H+ exchange activity in PM vesicles isolated from Vallisneria leaves.
Collapse
|
8
|
Zhang S, Liu J, Xue X, Tan K, Wang C, Su H. The migration direction of hair cell nuclei is closely related to the perinuclear actin filaments in Arabidopsis. Biochem Biophys Res Commun 2019; 519:783-789. [PMID: 31551150 DOI: 10.1016/j.bbrc.2019.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022]
Abstract
Nuclear migration in Arabidopsis root hairs is bidirectional and relies on actin filaments. However, how actin filaments regulate the bidirectional movement of nuclei remains unclear. Here, we discovered that nuclei migrate forward and backward according to the developmental stage of the hair cells. In addition, the migration direction of nuclei was not constant but reversed occasionally, accompanied by nuclear shape changes. Confocal microscopic analysis revealed that perinuclear actin bundles were closely related to the migration and shape of hair cell nuclei. Pharmacological studies showed that SMIFH2, an inhibitor of the actin nucleator-formin, inhibited nuclear backward migration probably by impairing the perinuclear actin filaments. These data indicate that nuclear migration in hair cells is likely motivated by the competition of mechanical forces acting on the nucleus. Furthermore, the perinuclear actin filaments are closely related to the migration direction of hair cell nuclei.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Kang Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
9
|
Yasuhara H, Kurisu W. A Kinesin-Related Protein, TBK11, Associates with the Nuclear Envelope throughout the Cell Cycle in Tobacco BY-2 Cells. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Wataru Kurisu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
10
|
Kong SG, Wada M. Molecular basis of chloroplast photorelocation movement. JOURNAL OF PLANT RESEARCH 2016; 129:159-66. [PMID: 26794773 DOI: 10.1007/s10265-016-0788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/03/2016] [Indexed: 05/05/2023]
Abstract
Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research Center for Live-Protein Dynamics, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
11
|
Oikawa K, Matsunaga S, Mano S, Kondo M, Yamada K, Hayashi M, Kagawa T, Kadota A, Sakamoto W, Higashi S, Watanabe M, Mitsui T, Shigemasa A, Iino T, Hosokawa Y, Nishimura M. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. NATURE PLANTS 2015; 1:15035. [PMID: 27247035 DOI: 10.1038/nplants.2015.35] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/23/2015] [Indexed: 05/25/2023]
Abstract
Life on earth relies upon photosynthesis, which consumes carbon dioxide and generates oxygen and carbohydrates. Photosynthesis is sustained by a dynamic environment within the plant cell involving numerous organelles with cytoplasmic streaming. Physiological studies of chloroplasts, mitochondria and peroxisomes show that these organelles actively communicate during photorespiration, a process by which by-products produced by photosynthesis are salvaged. Nevertheless, the mechanisms enabling efficient exchange of metabolites have not been clearly defined. We found that peroxisomes along chloroplasts changed shape from spherical to elliptical and their interaction area increased during photorespiration. We applied a recent femtosecond laser technology to analyse adhesion between the organelles inside palisade mesophyll cells of Arabidopsis leaves and succeeded in estimating their physical interactions under different environmental conditions. This is the first application of this estimation method within living cells. Our findings suggest that photosynthetic-dependent interactions play a critical role in ensuring efficient metabolite flow during photorespiration.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Shigeru Matsunaga
- Hayama Center for Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Kanagawa, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Aichi, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Aichi, Japan
| | - Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Takatoshi Kagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Akeo Kadota
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Okayama, Japan
| | - Shoichi Higashi
- Okazaki Large Spectrograph, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Masakatsu Watanabe
- Hayama Center for Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Kanagawa, Japan
- Okazaki Large Spectrograph, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Niigata, Japan
| | - Akinori Shigemasa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan
| | - Takanori Iino
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
12
|
Zhou X, Groves NR, Meier I. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus 2015; 6:144-53. [PMID: 25759303 PMCID: PMC4615252 DOI: 10.1080/19491034.2014.1003512] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/06/2014] [Accepted: 12/22/2014] [Indexed: 10/23/2022] Open
Abstract
Nuclei undergo dynamic shape changes during plant development, but the mechanism is unclear. In Arabidopsis, Sad1/UNC-84 (SUN) proteins, WPP domain-interacting proteins (WIPs), WPP domain-interacting tail-anchored proteins (WITs), myosin XI-i, and CROWDED NUCLEI 1 (CRWN1) have been shown to be essential for nuclear elongation in various epidermal cell types. It has been proposed that WITs serve as adaptors linking myosin XI-i to the SUN-WIP complex at the nuclear envelope (NE). Recently, an interaction between Arabidopsis SUN1 and SUN2 proteins and CRWN1, a plant analog of lamins, has been reported. Therefore, the CRWN1-SUN-WIP-WIT-myosin XI-i interaction may form a linker of the nucleoskeleton to the cytoskeleton complex. In this study, we investigate this proposed mechanism in detail for nuclei of Arabidopsis root hairs and trichomes. We show that WIT2, but not WIT1, plays an essential role in nuclear shape determination by recruiting myosin XI-i to the SUN-WIP NE bridges. Compared with SUN2, SUN1 plays a predominant role in nuclear shape. The NE localization of SUN1, SUN2, WIP1, and a truncated WIT2 does not depend on CRWN1. While crwn1 mutant nuclei are smooth, the nuclei of sun or wit mutants are invaginated, similar to the reported myosin XI-i mutant phenotype. Together, this indicates that the roles of the respective WIT and SUN paralogs have diverged in trichomes and root hairs, and that the SUN-WIP-WIT2-myosin XI-i complex and CRWN1 independently determine elongated nuclear shape. This supports a model of nuclei being shaped both by cytoplasmic forces transferred to the NE and by nucleoplasmic filaments formed under the NE.
Collapse
Key Words
- Arabidopsis
- CDS, coding sequence
- CRWN
- CRWN1, CROWDED NUCLEI 1
- KASH
- KASH, Klarsicht/ANC-1/Syne-1 Homology
- LINC
- LINC, linker of the nucleoskeleton to the cytoskeleton
- NE, nuclear envelope
- NLI, nuclear envelope localization index
- SUN
- SUN, Sad1/UNC-84
- WIP, WPP domain-interacting protein
- WIT, WPP domain-interacting tail-anchored protein
- XI-iC642, myosin XI-i C-terminal 642 amino acids.
- nuclear envelope
- nuclear shape
- sun1-KO sun2-KD, sun1-knockout sun2-knockdown
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| | - Norman Reid Groves
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| | - Iris Meier
- Department of Molecular Genetics; The Ohio State University; Columbus, OH USA
| |
Collapse
|
13
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
15
|
Sakai Y, Inoue SI, Harada A, Shimazaki KI, Takagi S. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:93-105. [PMID: 25231366 DOI: 10.1111/jipb.12284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | | | | | | | | |
Collapse
|
16
|
Kawashima T, Maruyama D, Shagirov M, Li J, Hamamura Y, Yelagandula R, Toyama Y, Berger F. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. eLife 2014; 3. [PMID: 25303363 PMCID: PMC4221737 DOI: 10.7554/elife.04501] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin-myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Daisuke Maruyama
- Nagoya Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Murat Shagirov
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing Li
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yuki Hamamura
- Division of Biological Sciences, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Ramesh Yelagandula
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Frédéric Berger
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proc Natl Acad Sci U S A 2014; 111:11900-5. [PMID: 25074908 DOI: 10.1073/pnas.1323104111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals.
Collapse
|
18
|
Higa T, Suetsugu N, Wada M. Plant nuclear photorelocation movement. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2873-2881. [PMID: 24336444 DOI: 10.1093/jxb/ert414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Organelle movement and positioning are essential for proper cellular function. A nucleus moves dynamically during cell division and differentiation and in response to environmental changes in animal, fungal, and plant cells. Nuclear movement is well-studied and the mechanisms have been mostly elucidated in animal and fungal cells, but not in plant cells. In prothallial cells of the fern Adiantum capillus-veneris and leaf cells of the flowering plant Arabidopsis thaliana, light induces nuclear movement and nuclei change their position according to wavelength, intensity, and direction of light. This nuclear photorelocation movement shows some common features with the photorelocation movement of chloroplasts, which is one of the best-characterized plant organelle movements. This review summarizes nuclear movement and positioning in plant cells, especially plant-specific nuclear photorelocation movement and discusses the relationship between nuclear photorelocation movement and chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
19
|
Griffis AHN, Groves NR, Zhou X, Meier I. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease. FRONTIERS IN PLANT SCIENCE 2014; 5:129. [PMID: 24772115 PMCID: PMC3982112 DOI: 10.3389/fpls.2014.00129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant-microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon.
Collapse
Affiliation(s)
- Anna H. N. Griffis
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Center for RNA Biology, The Ohio State UniversityColumbus, OH, USA
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
| | - Xiao Zhou
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Center for RNA Biology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
20
|
Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. Proc Natl Acad Sci U S A 2014; 111:4327-31. [PMID: 24591587 DOI: 10.1073/pnas.1317902111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear movement and positioning are indispensable for most cellular functions. In plants, strong light-induced chloroplast movement to the side walls of the cell is essential for minimizing damage from strong visible light. Strong light-induced nuclear movement to the side walls also has been suggested to play an important role in minimizing damage from strong UV light. Although both movements are regulated by the same photoreceptor, phototropin, the precise cytoskeleton-based force generation mechanism for nuclear movement is unknown, in contrast to the short actin-based mechanism of chloroplast movement. Here we show that actin-dependent movement of plastids attached to the nucleus is essential for light-induced nuclear movement in the Arabidopsis leaf epidermal cell. We found that nuclei are always associated with some plastids, and that light-induced nuclear movement is correlated with the dynamics of short actin filaments associated with plastids. Indeed, nuclei without plastid attachments do not exhibit blue light-induced directional movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, whereas attached plastids carry nuclei via the short actin filament-based movement. Thus, the close association between nuclei and plastids is essential for their cooperative movements and functions.
Collapse
|
21
|
Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement. MOLECULAR PLANT 2011; 4:771-81. [PMID: 21772030 DOI: 10.1093/mp/ssr061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|