1
|
Dias N, Dias M, Ribeiro A, Gomes N, Moraes A, Wesley M, Gonzaga C, Ramos DDAR, Braz S, Dallago B, de Carvalho JL, Hagström L, Nitz N, Hecht M. Network Analysis of Pathogenesis Markers in Murine Chagas Disease Under Antimicrobial Treatment. Microorganisms 2024; 12:2332. [PMID: 39597721 PMCID: PMC11596328 DOI: 10.3390/microorganisms12112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease (CD), a disease affecting millions globally, remains shrouded in scientific uncertainty, particularly regarding the role of the intestinal microbiota in disease progression. This study investigates the effects of antibiotic-induced microbiota depletion on parasite burden, immune responses, and clinical outcomes in BALB/c mice infected with either the Trypanosoma cruzi Colombiana or CL Brener strains. Mice were treated with a broad-spectrum antibiotic cocktail before infection, and parasite burden was quantified via qPCR at 30 and 100 days post-infection (dpi). Immune responses were analyzed using flow cytometry and ELISA, while histopathology was conducted on cardiac and intestinal tissues. Antibiotic treatment uncovered strain-specific correlations, with Colombiana infections affecting Bifidobacterium populations and CL Brener infections linked to Lactobacillus. Microbiota depletion initially reduced parasite burden in the heart and intestine, but an increase was observed in the chronic phase, except in the CL Brener-infected gut, where an early burden spike was followed by a decline. Antibiotic-induced bacterial shifts, such as reductions in Bacteroides and Bifidobacterium, promoted a more pro-inflammatory immune profile. These findings highlight the importance of microbiota and strain-specific factors in CD and suggest further research into microbiota manipulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Marina Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Andressa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nélio Gomes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Carlito Gonzaga
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Doralina do Amaral Rabello Ramos
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Shélida Braz
- Institute of Exact and Technological Sciences, Federal University of Amazonas, Manaus 69000-000, Brazil;
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| |
Collapse
|
2
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
3
|
Montoya AL, Carvajal EG, Ortega-Rodriguez U, Estevao IL, Ashmus RA, Jankuru SR, Portillo S, Ellis CC, Knight CD, Alonso-Padilla J, Izquierdo L, Pinazo MJ, Gascon J, Suarez V, Watts DM, Malo IR, Ramsey JM, Alarcón De Noya B, Noya O, Almeida IC, Michael K. A Branched and Double Alpha-Gal-Bearing Synthetic Neoglycoprotein as a Biomarker for Chagas Disease. Molecules 2022; 27:5714. [PMID: 36080480 PMCID: PMC9457857 DOI: 10.3390/molecules27175714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galβ. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.
Collapse
Affiliation(s)
- Alba L. Montoya
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa G. Carvajal
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Uriel Ortega-Rodriguez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Roger A. Ashmus
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sohan R. Jankuru
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Susana Portillo
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Colin D. Knight
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Veronica Suarez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Douglas M. Watts
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Iliana R. Malo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Belkisyolé Alarcón De Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Oscar Noya
- Seccion de Biohelmintiasis, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
de Araujo CB, Calderano SG, Elias MC. The Dynamics of Replication in Trypanosoma cruzi Parasites by Single-Molecule Analysis. J Eukaryot Microbiol 2018; 66:514-518. [PMID: 30076751 DOI: 10.1111/jeu.12676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Here, we investigated the features of replication in Trypanosoma cruzi epimastigotes based on fork speed progression, which is influenced by distinct features such as DNA polymerase rate, susceptibility to DNA damage and repair, secondary structures, transcription and chromatin state. Although T. cruzi exhibits a mean fork speed (2.05 ± 0.10 kb/min) very similar to other trypanosomatids, we found that the majority of DNA molecules replicated more slowly, with a frequency distribution approximately 1 kb/min. This frequency distribution analysis provides more information about the replication profile of this organism.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Simone G Calderano
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Laboratório de Parasitologia, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Maria Carolina Elias
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| |
Collapse
|
5
|
Bartholomeu DC, de Paiva RMC, Mendes TAO, DaRocha WD, Teixeira SMR. Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog 2014; 10:e1004399. [PMID: 25474314 PMCID: PMC4256449 DOI: 10.1371/journal.ppat.1004399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intracellular parasites, Trypanosoma brucei and other trypanosomatids develop extracellularly throughout their entire life cycle. After their genomes have been sequenced, various comparative genomic studies aimed at identifying sequences involved with host cell invasion and intracellular survival have been described. However, for only a handful of genes, most of them present exclusively in the T. cruzi or Leishmania genomes, has there been any experimental evidence associating them with intracellular parasitism. With the increasing number of published complete genome sequences of members of the trypanosomatid family, including not only different Trypanosoma and Leishmania strains and subspecies but also trypanosomatids that do not infect humans or other mammals, we may now be able to contemplate a slightly better picture regarding the specific set of parasite factors that defines each organism's mode of living and the associated disease phenotypes. Here, we review the studies concerning T. cruzi and Leishmania genes that have been implicated with cell invasion and intracellular parasitism and also summarize the wealth of new information regarding the mode of living of intracellular parasites that is resulting from comparative genome studies that are based on increasingly larger trypanosomatid genome datasets.
Collapse
Affiliation(s)
| | - Rita Marcia Cardoso de Paiva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago A. O. Mendes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wanderson D. DaRocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|