1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Nirogi R, Jayarajan P, Shinde A, Mohammed AR, Grandhi VR, Benade V, Goyal VK, Abraham R, Jasti V, Cummings J. Progress in Investigational Agents Targeting Serotonin-6 Receptors for the Treatment of Brain Disorders. Biomolecules 2023; 13:309. [PMID: 36830678 PMCID: PMC9953539 DOI: 10.3390/biom13020309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Serotonin (5-HT) plays an important role in the regulation of several basic functions of the central and peripheral nervous system. Among the 5-HT receptors, serotonin-6 (5-HT6) receptor has been an area of substantial research. 5-HT6 receptor is a G-protein-coupled receptor mediating its effects through diverse signaling pathways. Exceptional features of the receptors fueling drug discovery efforts include unique localization and specific distribution in the brain regions having a role in learning, memory, mood, and behavior, and the affinity of several clinically used psychotropic agents. Although non-clinical data suggest that both agonist and antagonist may have similar behavioral effects, most of the agents that entered clinical evaluation were antagonists. Schizophrenia was the initial target; more recently, cognitive deficits associated with Alzheimer's disease (AD) or other neurological disorders has been the target for clinically evaluated 5-HT6 receptor antagonists. Several 5-HT6 receptor antagonists (idalopirdine, intepirdine and latrepirdine) showed efficacy in alleviating cognitive deficits associated with AD in the proof-of-concept clinical studies; however, the outcomes of the subsequent phase 3 studies were largely disappointing. The observations from both non-clinical and clinical studies suggest that 5-HT6 receptor antagonists may have a role in the management of neuropsychiatric symptoms in dementia. Masupirdine, a selective 5-HT6 receptor antagonist, reduced agitation/aggression-like behaviors in animal models, and a post hoc analysis of a phase 2 trial suggested potential beneficial effects on agitation/aggression and psychosis in AD. This agent will be assessed in additional trials, and the outcome of the trials will inform the use of 5-HT6 receptor antagonists in the treatment of agitation in dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Pradeep Jayarajan
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Anil Shinde
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Abdul Rasheed Mohammed
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Venkata Ramalingayya Grandhi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Vijay Benade
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Vinod Kumar Goyal
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Renny Abraham
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Venkat Jasti
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
3
|
Abdildinova A, Kim YC, Lee GH, Park WK, Cho H, Gong YD. N-(2,7-dimethyl-2-alkyl-2H-chromen-6-yl)sulfonamide derivatives as selective serotonin 5-HT6 receptor antagonists: Design, synthesis, and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
5
|
Emery S, Fieux S, Vidal B, Courault P, Bouvard S, Tourvieille C, Iecker T, Billard T, Zimmer L, Lancelot S. Preclinical validation of [ 18F]2FNQ1P as a specific PET radiotracer of 5-HT 6 receptors in rat, pig, non-human primate and human brain tissue. Nucl Med Biol 2020; 82-83:57-63. [PMID: 32006785 DOI: 10.1016/j.nucmedbio.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The aim of this study was to perform in-vitro and in-vivo radiopharmacological characterizations of [18F]2FNQ1P, a new PET radiotracer of 5-HT6 receptors, in rat, pig, non-human primate and human tissues. The 5-HT6 receptor is one of the more recently identified serotonin receptors in central nervous system and, because of its role in memory and cognitive processes, is considered as a promising therapeutic target. METHODS In-vitro autoradiography and saturation binding assays were performed in postmortem brain tissues from rat, pig, non-human primate and human caudate nucleus, completed by serum stability assessment in all species and cerebral radiometabolite and biodistribution studies in rat. RESULTS In all species, autoradiography data revealed high binding levels of [18F]2FNQ1P in cerebral regions with high 5-HT6 receptor density. Binding was blocked by addition of SB258585 as a specific antagonist. Binding assays provided KD and Bmax values of respectively 1.34 nM and 0.03 pmol·mg-1 in rat, 0.60 nM and 0.04 pmol·mg-1 in pig, 1.38 nM and 0.07 pmol·mg-1 in non-human primate, and 1.39 nM and 0.15 pmol·mg-1 in human caudate nucleus. In rat brain, the proportion of unmetabolized [18F]2FNQ1P was >99% 5 min after iv injection and 89% at 40 min. The biodistribution studies found maximal radioactivity in lungs and kidneys (3.5 ± 1.2% ID/g and 2.0 ± 0.7% ID/g, respectively, 15 min post-injection). CONCLUSION These radiopharmacological data confirm that [18F]2FNQ1P is a specific radiotracer for molecular imaging of 5-HT6 receptors and suggest that it could be used as a radiopharmaceutical in humans.
Collapse
Affiliation(s)
- Stéphane Emery
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | - Pierre Courault
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France
| | | | | | - Thierry Billard
- CERMEP Imaging Platform, Bron, France; Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France; CERMEP Imaging Platform, Bron, France; National Institute for Nuclear Science and Technology INSTN, CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center, Université de Lyon, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Bron, France; CERMEP Imaging Platform, Bron, France
| |
Collapse
|
6
|
Virtual screening-driven discovery of dual 5-HT 6/5-HT 2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2019; 185:111857. [PMID: 31734022 DOI: 10.1016/j.ejmech.2019.111857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
Abstract
A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.
Collapse
|
7
|
Rychtyk J, Partyka A, Gdula-Argasińska J, Mysłowska K, Wilczyńska N, Jastrzębska-Więsek M, Wesołowska A. 5-HT 6 receptor agonist and antagonist improve memory impairments and hippocampal BDNF signaling alterations induced by MK-801. Brain Res 2019; 1722:146375. [PMID: 31412259 DOI: 10.1016/j.brainres.2019.146375] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to investigate and compare the effects of acute and chronic (21-day) administration of agonist (WAY-181187) and antagonist (SB-742457) of the 5-hydroxytryptamine 6 receptor (5-HT6R) on MK-801-induced memory impairments in novel object recognition (NORT) and Y-maze continuous spontaneous alternation tests (Y-CAT). Further, the expression of the brain-derived neurotrophic factor (BDNF) in rat hippocampus was measured after 21-day administration to investigate BDNF participation in the pro-cognitive effects of 5-HT6R ligands. We found that acute administration of WAY-181187, as well as SB-742457, reversed the effects of MK-801 in NORT and Y-CAT, and that this influence persisted after prolonged application in NORT but not in Y-CAT. Both 5-HT6R ligands increased hippocampal BDNF protein expression, but WAY-181187 was much more potent than SB-742457 and alleviated the MK-801-induced inhibition of BDNF signaling pathways better, which seems to translate into a stronger WAY-181187 effect in behavioral tests. Collectively, both the 5-HT6R agonist and the antagonist, administered acutely and chronically, prevent memory impairments and alterations in BDNF signaling induced by MK-801 in rats. The present results confirm the pro-cognitive properties of both types of 5-HT6R ligands and suggest that BDNF pathways may be involved in their mechanism of action.
Collapse
Affiliation(s)
- Joanna Rychtyk
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Katarzyna Mysłowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Natalia Wilczyńska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
8
|
Serotonin 5-HT 6 Receptor Antagonists in Alzheimer's Disease: Therapeutic Rationale and Current Development Status. CNS Drugs 2017; 31:19-32. [PMID: 27914038 DOI: 10.1007/s40263-016-0399-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.
Collapse
|
9
|
Becker G, Colomb J, Sgambato-Faure V, Tremblay L, Billard T, Zimmer L. Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. Eur J Nucl Med Mol Imaging 2014; 42:495-502. [DOI: 10.1007/s00259-014-2936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
|
10
|
Nikiforuk A. The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia. Rev Neurosci 2014; 25:367-82. [PMID: 24501158 DOI: 10.1515/revneuro-2014-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
In addition to positive and negative symptoms, cognitive deficits are increasingly being recognized as a core feature of schizophrenia. Neurocognitive impairments are strongly associated with functional outcomes; thus, the treatment of cognitive impairments is of central importance. A large body of evidence suggests that the serotonin 6 (5-HT6) receptors may be potential targets for cognitive improvement. Clinical and preclinical studies have supported the notion that using 5-HT6 receptor antagonists is a promising component in the treatment of cognitive dysfunctions associated with aging and Alzheimer's disease. However, less is known about the efficacy of this strategy in the treatment of schizophrenia-like cognitive disturbances. The purpose of this review is to summarize existing data on the effects of 5-HT6 receptor antagonists in animal experiments, utilizing tasks that assess cognitive domains that are relevant to the cognitive deficits characterizing schizophrenia. This review focuses primarily on animal models of schizophrenia that are based on the blockade of N-methyl-d-aspartate receptors; however, when relevant, data obtained in other models are also discussed. The putative procognitive actions of 5-HT6 agonists are also reviewed. Finally, the mechanisms that are putatively responsible for the procognitive effects of 5-HT6 receptor ligands are briefly discussed.
Collapse
|
11
|
Tse S, Leung L, Raje S, Seymour M, Shishikura Y, Obach RS. Disposition and Metabolic Profiling of [14C]Cerlapirdine Using Accelerator Mass Spectrometry. Drug Metab Dispos 2014; 42:2023-32. [DOI: 10.1124/dmd.114.059675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Ivachtchenko AV. Sulfonyl-containing modulators of serotonin 5-HT6receptors and their pharmacophore models. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n05abeh004371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Ivachtchenko AV, Ivanenkov YA. 5HT(6) receptor antagonists: a patent update. Part 1. Sulfonyl derivatives. Expert Opin Ther Pat 2012; 22:917-64. [PMID: 22816965 DOI: 10.1517/13543776.2012.709236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Among a variety of proteins included in a relatively wide GPCR family, serotonin 5HT receptors (5HT(6)Rs) are highly attractive as important biological targets with enormous clinical importance. Among this subclass, 5HT(6)R is the most recently discovered group. Available biological data clearly indicate that 5HT(6)R antagonists can be used as effective regulators in a variety of contexts, including memory formation, age-related cognitive impairments and memory deficits associated with conditions such as schizophrenia, Parkinson's disease and Alzheimer's disease. Therefore, this receptor has already attracted a considerable attention within the scientific community, due to its versatile therapeutic potential. AREAS COVERED The current paper is an update to the comprehensive review article published previously in Expert Opinion on Therapeutic Patents (see issue 20(7), 2010). Here, the main focus is on small-molecule compounds - 5HT(6) antagonists - which have been described in recent patent literature, since the end of 2009. To obtain a clear understanding of the situation and dynamic within the field of 5HT(6) ligands, having an obvious pharmaceutical potential in terms of related patents, a comprehensive search through several key patent collections have been provided. The authors describe the reported chemical classes and scaffolds in sufficient detail to provide a valuable insight in the 5HT(6)R chemistry and pharmacology. The review consists of two core parts with separate sections arranged in accordance with the main structural features of 5HT(6)R ligands. EXPERT OPINION Recent progress in the understanding of the 5HT(6) receptor function and structure includes a suggested constitutive activity for the receptor, development of a number of multimodal small molecule ligands and re-classification of many selective antagonists as pseudo-selective agents. Heterocycles with sulfonyl group and without any basic center provide sufficient supramolecular interactions and show high antagonistic activity against 5HT(6)R.
Collapse
|
14
|
Nirogi RV, Konda JB, Kambhampati R, Shinde A, Bandyala TR, Gudla P, Kandukuri KK, Jayarajan P, Kandikere V, Dubey P. N,N-Dimethyl-[9-(arylsulfonyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl]amines as novel, potent and selective 5-HT6 receptor antagonists. Bioorg Med Chem Lett 2012; 22:6980-5. [DOI: 10.1016/j.bmcl.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 11/27/2022]
|
15
|
van Loevezijn A, Venhorst J, Iwema Bakker WI, de Korte CG, de Looff W, Verhoog S, van Wees JW, van Hoeve M, van de Woestijne RP, van der Neut MAW, Borst AJM, van Dongen MJP, de Bruin NMWJ, Keizer HG, Kruse CG. N′-(Arylsulfonyl)pyrazoline-1-carboxamidines as Novel, Neutral 5-Hydroxytryptamine 6 Receptor (5-HT6R) Antagonists with Unique Structural Features. J Med Chem 2011; 54:7030-54. [DOI: 10.1021/jm200466r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnold van Loevezijn
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Jennifer Venhorst
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Wouter I. Iwema Bakker
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Cor G. de Korte
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Wouter de Looff
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Stefan Verhoog
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Jan-Willem van Wees
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Martijn van Hoeve
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Rob P. van de Woestijne
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Martina A. W. van der Neut
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Alice J. M. Borst
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Maria J. P. van Dongen
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Natasja M. W. J. de Bruin
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Hiskias G. Keizer
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Chris G. Kruse
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| |
Collapse
|