1
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37365919 DOI: 10.1080/1062936x.2023.2225872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Development of new anti-tubercular agents is required in the wake of resistance to the existing and newly approved drugs through novel-validated targets like ATP synthase, etc. The major limitation of poor correlation between docking scores and biological activity by SBDD was overcome by a novel approach of quantitatively correlating the interactions of different amino acid residues present in the target protein structure with the activity. This approach well predicted the ATP synthase inhibitory activity of imidazo[1,2-a] pyridine ethers and squaramides (r = 0.84) in terms of Glu65b interactions. Hence, the models were developed on combined (r = 0.78), and training (r = 0.82) sets of 52, and 27 molecules, respectively. The training set model well predicted the diverse dataset (r = 0.84), test set (r = 0.755), and, external dataset (rext = 0.76). This model predicted three compounds from a focused library generated by incorporating the essential features of the ATP synthase inhibition with the pIC50 values in the range of 0.0508-0.1494 µM. Molecular dynamics simulation studies ascertain the stability of the protein structure and the docked poses of the ligands. The developed model(s) may be useful in the identification and optimization of novel compounds against TB.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
2
|
Bayarri G, Hospital A, Orozco M. 3dRS, a Web-Based Tool to Share Interactive Representations of 3D Biomolecular Structures and Molecular Dynamics Trajectories. Front Mol Biosci 2021; 8:726232. [PMID: 34485386 PMCID: PMC8414788 DOI: 10.3389/fmolb.2021.726232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
3D Representation Sharing (3dRS) is a web-based tool designed to share biomolecular structure representations, including 4D ensembles derived from Molecular Dynamics (MD) trajectories. The server offers a team working in different locations a single URL to share and discuss structural data in an interactive fashion, with the possibility to use it as a live figure for scientific papers. The web tool allows an easy upload of structures and trajectories in different formats. The 3D representation, powered by NGL viewer, offers an interactive display with smooth visualization in modern web browsers. Multiple structures can be loaded and superposed in the same scene. 1D sequences from the loaded structures are presented and linked to the 3D representation. Multiple, pre-defined 3D molecular representations are available. The powerful NGL selection syntax allows the definition of molecular regions that can be then displayed using different representations. Important descriptors such as distances or interactions can be easily added into the representation. Trajectory frames can be explored using a common video player control panel. Trajectories are efficiently stored and transferred to the NGL viewer thanks to an MDsrv-based data streaming. The server design offers all functionalities in one single web page, with a curated user experience, involving a minimum learning curve. Extended documentation is available, including a gallery with a collection of scenes. The server requires no registration and is available at https://mmb.irbbarcelona.org/3dRS.
Collapse
Affiliation(s)
- Genís Bayarri
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Orellana L, Gustavsson J, Bergh C, Yoluk O, Lindahl E. eBDIMS server: protein transition pathways with ensemble analysis in 2D-motion spaces. Bioinformatics 2020; 35:3505-3507. [PMID: 30838394 PMCID: PMC6748756 DOI: 10.1093/bioinformatics/btz104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/30/2018] [Accepted: 02/15/2019] [Indexed: 11/15/2022] Open
Abstract
SUMMARY Understanding how proteins transition between different conformers, and how conformers relate to each other in terms of structure and function, is not trivial. Here, we present an online tool for transition pathway generation between two protein conformations using Elastic Network Driven Brownian Dynamics Importance Sampling, a coarse-grained simulation algorithm, which spontaneously predicts transition intermediates trapped experimentally. In addition to path-generation, the server provides an interactive 2D-motion landscape graphical representation of the transitions or any additional conformers to explore their structural relationships. AVAILABILITY AND IMPLEMENTATION eBDIMS is available online: http://ebdims.biophysics.se/ or as standalone software: https://github.com/laura-orellana/eBDIMS, https://github.com/cabergh/eBDIMS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Laura Orellana
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Johan Gustavsson
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cathrine Bergh
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Ozge Yoluk
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
4
|
Macalino SJY, Billones JB, Organo VG, Carrillo MCO. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020; 25:E665. [PMID: 32033144 PMCID: PMC7037728 DOI: 10.3390/molecules25030665] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to global public health, responsible for an estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection, slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance, and the effective application of computational tools to the different stages of TB drug discovery when combined with traditional biochemical methods. We will also highlight the strengths and points of improvement in in silico TB drug discovery research, as well as possible future perspectives in this field.
Collapse
Affiliation(s)
- Stephani Joy Y. Macalino
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0992, Philippines;
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Junie B. Billones
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Voltaire G. Organo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Maria Constancia O. Carrillo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| |
Collapse
|
5
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
6
|
Gopi S, Aranganathan A, Naganathan AN. Thermodynamics and folding landscapes of large proteins from a statistical mechanical model. Curr Res Struct Biol 2019; 1:6-12. [PMID: 34235463 PMCID: PMC8244504 DOI: 10.1016/j.crstbi.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the 'bWSME' model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akashnathan Aranganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Kahana A, Lancet D. Protobiotic Systems Chemistry Analyzed by Molecular Dynamics. Life (Basel) 2019; 9:E38. [PMID: 31083329 PMCID: PMC6617412 DOI: 10.3390/life9020038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Systems chemistry has been a key component of origin of life research, invoking models of life's inception based on evolving molecular networks. One such model is the graded autocatalysis replication domain (GARD) formalism embodied in a lipid world scenario, which offers rigorous computer simulation based on defined chemical kinetics equations. GARD suggests that the first pre-RNA life-like entities could have been homeostatically-growing assemblies of amphiphiles, undergoing compositional replication and mutations, as well as rudimentary selection and evolution. Recent progress in molecular dynamics has provided an experimental tool to study complex biological phenomena such as protein folding, ligand-receptor interactions, and micellar formation, growth, and fission. The detailed molecular definition of GARD and its inter-molecular catalytic interactions make it highly compatible with molecular dynamics analyses. We present a roadmap for simulating GARD's kinetic and thermodynamic behavior using various molecular dynamics methodologies. We review different approaches for testing the validity of the GARD model by following micellar accretion and fission events and examining compositional changes over time. Near-future computational advances could provide empirical delineation for further system complexification, from simple compositional non-covalent assemblies towards more life-like protocellular entities with covalent chemistry that underlies metabolism and genetic encoding.
Collapse
Affiliation(s)
- Amit Kahana
- Dept. Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610010, Israel.
| | - Doron Lancet
- Dept. Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610010, Israel.
| |
Collapse
|
8
|
Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci U S A 2019; 116:10009-10018. [PMID: 31028138 DOI: 10.1073/pnas.1821442116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.
Collapse
|
9
|
Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations. Nat Commun 2016; 7:12575. [PMID: 27578633 PMCID: PMC5013691 DOI: 10.1038/ncomms12575] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general. Protein conformational changes are key to a wide range of cellular functions but remain difficult to access experimentally. Here the authors describe eBDIMS, a novel approach to predict intermediates observed in structural transition pathways from experimental ensembles.
Collapse
|
10
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools. Catalysts 2016; 6. [PMID: 27885336 PMCID: PMC5119520 DOI: 10.3390/catal6060082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review discusses the use of molecular modeling tools, together with existing experimental findings, to provide a complete atomic-level description of enzyme dynamics and function. We focus on functionally relevant conformational dynamics of enzymes and the protonation states of substrates. The conformational fluctuations of enzymes usually play a crucial role in substrate recognition and catalysis. Protein dynamics can be altered by a tiny change in a molecular system such as different protonation states of various intermediates or by a significant perturbation such as a ligand association. Here we review recent advances in applying atomistic molecular dynamics (MD) simulations to investigate allosteric and network regulation of tryptophan synthase (TRPS) and protonation states of its intermediates and catalysis. In addition, we review studies using quantum mechanics/molecular mechanics (QM/MM) methods to investigate the protonation states of catalytic residues of β-Ketoacyl ACP synthase I (KasA). We also discuss modeling of large-scale protein motions for HIV-1 protease with coarse-grained Brownian dynamics (BD) simulations.
Collapse
|
12
|
Sfriso P, Duran-Frigola M, Mosca R, Emperador A, Aloy P, Orozco M. Residues Coevolution Guides the Systematic Identification of Alternative Functional Conformations in Proteins. Structure 2016; 24:116-126. [DOI: 10.1016/j.str.2015.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 12/12/2022]
|
13
|
Ceres N, Lavery R. Improving the treatment of coarse-grain electrostatics: CVCEL. J Chem Phys 2015; 143:243118. [DOI: 10.1063/1.4933434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- N. Ceres
- Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367, France
| | - R. Lavery
- Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367, France
| |
Collapse
|
14
|
Emperador A, Sfriso P, Villarreal MA, Gelpí JL, Orozco M. PACSAB: Coarse-Grained Force Field for the Study of Protein–Protein Interactions and Conformational Sampling in Multiprotein Systems. J Chem Theory Comput 2015; 11:5929-38. [DOI: 10.1021/acs.jctc.5b00660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agustí Emperador
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
| | - Pedro Sfriso
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
| | - Marcos Ariel Villarreal
- Instituto de Investigaciones en Fisicoquímica de Córdoba
- Departamento de Matemática y Física, CONICET-Universidad Nacional de Córdoba, University City, Córdoba 5000, Argentina
| | - Josep Lluis Gelpí
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
- Barcelona Supercomputing Center, Jordi Girona
29, Barcelona 08034, Spain
- Departament de Bioquímica, Facultat de Biologia, Avgda Diagonal 645, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
- Barcelona Supercomputing Center, Jordi Girona
29, Barcelona 08034, Spain
- Departament de Bioquímica, Facultat de Biologia, Avgda Diagonal 645, Barcelona 08028, Spain
| |
Collapse
|
15
|
Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 2015; 8:37-47. [PMID: 26604800 PMCID: PMC4655909 DOI: 10.2147/aabc.s70333] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.
Collapse
Affiliation(s)
- Adam Hospital
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, University of Barcelona, Barcelona, Spain
| | - Josep Ramon Goñi
- Joint BSC-IRB Research Program in Computational Biology, University of Barcelona, Barcelona, Spain ; Barcelona Supercomputing Center, University of Barcelona, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, University of Barcelona, Barcelona, Spain ; Joint BSC-IRB Research Program in Computational Biology, University of Barcelona, Barcelona, Spain ; Barcelona Supercomputing Center, University of Barcelona, Barcelona, Spain ; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Josep L Gelpí
- Joint BSC-IRB Research Program in Computational Biology, University of Barcelona, Barcelona, Spain ; Barcelona Supercomputing Center, University of Barcelona, Barcelona, Spain ; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
De novoinference of protein function from coarse-grained dynamics. Proteins 2014; 82:2443-54. [DOI: 10.1002/prot.24609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 01/04/2023]
|
17
|
Jamroz M, Kolinski A, Kmiecik S. CABS-flex predictions of protein flexibility compared with NMR ensembles. ACTA ACUST UNITED AC 2014; 30:2150-4. [PMID: 24735558 PMCID: PMC4103595 DOI: 10.1093/bioinformatics/btu184] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Motivation: Identification of flexible regions of protein structures is important for understanding of their biological functions. Recently, we have developed a fast approach for predicting protein structure fluctuations from a single protein model: the CABS-flex. CABS-flex was shown to be an efficient alternative to conventional all-atom molecular dynamics (MD). In this work, we evaluate CABS-flex and MD predictions by comparison with protein structural variations within NMR ensembles. Results: Based on a benchmark set of 140 proteins, we show that the relative fluctuations of protein residues obtained from CABS-flex are well correlated to those of NMR ensembles. On average, this correlation is stronger than that between MD and NMR ensembles. In conclusion, CABS-flex is useful and complementary to MD in predicting protein regions that undergo conformational changes as well as the extent of such changes. Availability and implementation: The CABS-flex is freely available to all users at http://biocomp.chem.uw.edu.pl/CABSflex. Contact: sekmi@chem.uw.edu.pl Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michal Jamroz
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Andrzej Kolinski
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Sebastian Kmiecik
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
18
|
Sfriso P, Hospital A, Emperador A, Orozco M. Exploration of conformational transition pathways from coarse-grained simulations. ACTA ACUST UNITED AC 2013; 29:1980-6. [PMID: 23740746 DOI: 10.1093/bioinformatics/btt324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MOTIVATION A new algorithm to trace conformational transitions in proteins is presented. The method uses discrete molecular dynamics as engine to sample protein conformational space. A multiple minima Go-like potential energy function is used in combination with several enhancing sampling strategies, such as metadynamics, Maxwell Demon molecular dynamics and essential dynamics. The method, which shows an unprecedented computational efficiency, is able to trace a wide range of known experimental transitions. Contrary to simpler methods our strategy does not introduce distortions in the chemical structure of the protein and is able to reproduce well complex non-linear conformational transitions. The method, called GOdMD, can easily introduce additional restraints to the transition (presence of ligand, known intermediate, known maintained contacts, …) and is freely distributed to the community through the Spanish National Bioinformatics Institute (http://mmb.irbbarcelona.org/GOdMD). AVAILABILITY Freely available on the web at http://mmb.irbbarcelona.org/GOdMD.
Collapse
Affiliation(s)
- Pedro Sfriso
- Institute for Research in Biomedicine (IRB Barcelona), Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10, Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Hospital A, Gelpi JL. High-throughput molecular dynamics simulations: toward a dynamic view of macromolecular structure. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2012. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy.
| |
Collapse
|
21
|
Zacharias M. Combining coarse-grained nonbonded and atomistic bonded interactions for protein modeling. Proteins 2012; 81:81-92. [PMID: 22911567 DOI: 10.1002/prot.24164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 12/12/2022]
Abstract
A hybrid coarse-grained (CG) and atomistic (AT) model for protein simulations and rapid searching and refinement of peptide-protein complexes has been developed. In contrast to other hybrid models that typically represent spatially separate parts of a protein by either a CG or an AT force field model, the present approach simultaneously represents the protein by an AT (united atom) and a CG model. The interactions of the protein main chain are described based on the united atom force field allowing a realistic representation of protein secondary structures. In addition, the AT description of all other bonded interactions keeps the protein compatible with a realistic bonded geometry. Nonbonded interactions between side chains and side chains and main chain are calculated at the level of a CG model using a knowledge-based potential. Unrestrained molecular dynamics simulations on several test proteins resulted in trajectories in reasonable agreement with the corresponding experimental structures. Applications to the refinement of docked peptide-protein complexes resulted in improved complex structures. Application to the rapid refinement of docked protein-protein complex is also possible but requires further optimization of force field parameters.
Collapse
Affiliation(s)
- Martin Zacharias
- Physik-Department T38, Technische Universität München, James Franck Str. 1, 85748 Garching, Germany.
| |
Collapse
|
22
|
Sfriso P, Emperador A, Orellana L, Hospital A, Gelpí JL, Orozco M. Finding Conformational Transition Pathways from Discrete Molecular Dynamics Simulations. J Chem Theory Comput 2012; 8:4707-18. [DOI: 10.1021/ct300494q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pedro Sfriso
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Agusti Emperador
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Laura Orellana
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
| | - Adam Hospital
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Structural Bioinformatics Node,
Instituto Nacional De Bioinformática, Institute of Research
in Biomedicine, Josep Samitier 1-5, Barcelona, 08028, Spain
| | - Josep Lluis Gelpí
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Computational Bioinformatics Node,
Instituto Nacional De Bioinformática, Barcelona Supercomputing
Center, Jordi Girona 29, Barcelona, 08034, Spain
- Departament de Bioquímica,
Facultat de Biologia, Universtitat de Barcelona, Avgda Diagonal 647,
Barcelona, 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational
Biology, Institute of Research in Biomedicine, Josep Samitier 1-5,
Barcelona, 08028, Spain
- Structural Bioinformatics Node,
Instituto Nacional De Bioinformática, Institute of Research
in Biomedicine, Josep Samitier 1-5, Barcelona, 08028, Spain
- Departament de Bioquímica,
Facultat de Biologia, Universtitat de Barcelona, Avgda Diagonal 647,
Barcelona, 08028, Spain
| |
Collapse
|