1
|
Guo P, Wang Y, Xu J, Yang Z, Zhang Z, Qian J, Hu J, Yin Z, Yang L, Liu M, Liu X, Li G, Zhang H, Rumsey R, Wang P, Zhang Z. Autophagy and cell wall integrity pathways coordinately regulate the development and pathogenicity through MoAtg4 phosphorylation in Magnaporthe oryzae. PLoS Pathog 2024; 20:e1011988. [PMID: 38289966 PMCID: PMC10857709 DOI: 10.1371/journal.ppat.1011988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/09/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Pusheng Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yurong Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jinyi Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ryan Rumsey
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
3
|
Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy 2022; 18:2020-2035. [PMID: 35072587 PMCID: PMC9397461 DOI: 10.1080/15548627.2022.2025572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular degradation pathway that maintains cellular homeostasis. Over the past two decades, a series of scientific breakthroughs have helped explain autophagy-related molecular mechanisms and physiological functions. This tremendous progress continues to depend largely on powerful research methods, specifically, various autophagy marker Atg8-PE protein-based methods for studying membrane dynamics and monitoring autophagic activity. Recently, several biochemical approaches have been successfully developed to produce the lipidated protein Atg8-PE or its mimics in vitro, including enzyme-mediated reconstitution systems, chemically defined reconstitution systems, cell-free lipidation systems and protein chemical synthesis. These approaches have contributed important insights into the mechanisms underlying Atg8-mediated membrane dynamics and protein-protein interactions, creating a new perspective in autophagy studies. In this review, we comprehensively summarize Atg8-PE protein-based in vitro biochemical approaches and recent advances to facilitate a better understanding of autophagy mechanisms. In addition, we highlight the advantages and disadvantages of various Atg8-PE protein-based approaches to provide general guidance for their use in studying autophagy.Abbreviations: ATG: autophagy related; ATP: adenosine triphosphate; COPII: coat protein complex II; DGS-NTA: 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt); DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; E. coli: Escherichia coli; EPL: expressed protein ligation; ERGIC: ER-Golgi intermediate compartment; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; GUVs: giant unilamellar vesicles; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MBP: maltose binding protein; MEFs: mouse embryonic fibroblasts; MESNa: 2-mercaptoethanesulfonic acid sodium salt; NCL: native chemical ligation; NTA: nitrilotriacetic acid; PE: phosphatidylethanolamine; PS: phosphatidylserine; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SPPS: solid-phase peptide synthesis; TEV: tobacco etch virus; WT: wild-type.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China,CONTACT Aimin Yang School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nat Chem 2021; 13:335-342. [PMID: 33785892 PMCID: PMC8049973 DOI: 10.1038/s41557-021-00667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023]
Abstract
In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA 'nanobricks' to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30-130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Collapse
|
5
|
Microfluidic Deformability Study of an Innovative Blood Analogue Fluid Based on Giant Unilamellar Vesicles. J Funct Biomater 2018; 9:jfb9040070. [PMID: 30518160 PMCID: PMC6306889 DOI: 10.3390/jfb9040070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
Blood analogues have long been a topic of interest in biofluid mechanics due to the safety and ethical issues involved in the collection and handling of blood samples. Although the current blood analogue fluids can adequately mimic the rheological properties of blood from a macroscopic point of view, at the microscopic level blood analogues need further development and improvement. In this work, an innovative blood analogue containing giant unilamellar vesicles (GUVs) was developed to mimic the flow behavior of red blood cells (RBCs). A natural lipid mixture, soybean lecithin, was used for the GUVs preparation, and three different lipid concentrations were tested (1 × 10-3 M, 2 × 10-3 M and 4 × 10-3 M). GUV solutions were prepared by thin film hydration with a buffer, followed by extrusion. It was found that GUVs present diameters between 5 and 7 µm which are close to the size of human RBCs. Experimental flow studies of three different GUV solutions were performed in a hyperbolic-shaped microchannel in order to measure the GUVs deformability when subjected to a homogeneous extensional flow. The result of the deformation index (DI) of the GUVs was about 0.5, which is in good agreement with the human RBC's DI. Hence, the GUVs developed in this study are a promising way to mimic the mechanical properties of the RBCs and to further develop particulate blood analogues with flow properties closer to those of real blood.
Collapse
|
6
|
Daste F, Sauvanet C, Bavdek A, Baye J, Pierre F, Le Borgne R, David C, Rojo M, Fuchs P, Tareste D. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 2018; 19:embr.201643637. [PMID: 29661855 DOI: 10.15252/embr.201643637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.
Collapse
Affiliation(s)
- Frédéric Daste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Cécile Sauvanet
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Andrej Bavdek
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - James Baye
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Fabienne Pierre
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Claudine David
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Manuel Rojo
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Patrick Fuchs
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - David Tareste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France .,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Yu S, Melia TJ. The coordination of membrane fission and fusion at the end of autophagosome maturation. Curr Opin Cell Biol 2017; 47:92-98. [PMID: 28463755 DOI: 10.1016/j.ceb.2017.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
The two major objectives of macroautophagy are to sequester cargo away from the cytoplasm and deliver this material for breakdown in the lysosome. Sequestration is complete when the autophagosome membrane undergoes fission to produce separate inner and outer membranes, while delivery into the lysosome requires fusion of the outer autophagosome membrane with the lysosome membrane. Thus, the merging of membranes through fission and fusion underlies each of the pivotal events in macroautophagic clearance. How these merging events are controlled in the cell is poorly understood. Several recent studies however suggest that the two events may be temporally coordinated and rely upon members of the classic membrane fusion SNARE family as well as the autophagy-specific family of Atg8 proteins.
Collapse
Affiliation(s)
- Shenliang Yu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
8
|
Nguyen N, Shteyn V, Melia TJ. Sensing Membrane Curvature in Macroautophagy. J Mol Biol 2017; 429:457-472. [PMID: 28088480 PMCID: PMC5276735 DOI: 10.1016/j.jmb.2017.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
In response to intracellular stress events ranging from starvation to pathogen invasion, the cell activates one or more forms of macroautophagy. The key event in these related pathways is the de novo formation of a new organelle called the autophagosome, which either surrounds and sequesters random portions of the cytoplasm or selectively targets individual intracellular challenges. Thus, the autophagosome is a flexible membrane platform with dimensions that ultimately depend upon the target cargo. The intermediate membrane, termed the phagophore or isolation membrane, is a cup-like structure with a clear concave face and a highly curved rim. The phagophore is largely devoid of integral membrane proteins; thus, its shape and size are governed by peripherally associated membrane proteins and possibly by the lipid composition of the membrane itself. Growth along the phagophore rim marks the progress of both organelle expansion and ultimately organelle closure around a particular cargo. These two properties, a reliance on peripheral membrane proteins and a structurally distinct membrane architecture, suggest that the ability to target or manipulate membrane curvature might be an essential activity of proteins functioning in this pathway. In this review, we discuss the extent to which membranes are naturally curved at each of the cellular sites believed to engage in autophagosome formation, review basic mechanisms used to sense this curvature, and then summarize the existing literature concerning which autophagy proteins are capable of curvature recognition.
Collapse
Affiliation(s)
- Nathan Nguyen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Vladimir Shteyn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun 2015; 6:7159. [PMID: 26074052 PMCID: PMC4490570 DOI: 10.1038/ncomms8159] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 12/23/2022] Open
Abstract
The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. The mechanical properties of the metazoan nucleus can be influenced by the nuclear lamina. Here, Schreiner et al. show that untethering chromatin from the inner nuclear membrane results in highly deformable, softer nuclei, revealing an important role for chromatin in modulating nuclear mechanics.
Collapse
|
10
|
Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B, Melia. TJ. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 2014; 16:415-24. [PMID: 24747438 PMCID: PMC4111135 DOI: 10.1038/ncb2940] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 02/27/2014] [Indexed: 02/07/2023]
Abstract
The components supporting autophagosome growth on the cup-like isolation membrane are likely to be different from those found on closed and maturing autophagosomes. The highly curved rim of the cup may serve as a functionally required surface for transiently associated components of the early acting autophagic machinery. Here we demonstrate that the E2-like enzyme, Atg3, facilitates LC3/GABARAP lipidation only on membranes exhibiting local lipid-packing defects. This activity requires an amino-terminal amphipathic helix similar to motifs found on proteins targeting highly curved intracellular membranes. By tuning the hydrophobicity of this motif, we can promote or inhibit lipidation in vitro and in rescue experiments in Atg3-knockout cells, implying a physiologic role for this stress detection. The need for extensive lipid-packing defects suggests that Atg3 is designed to work at highly curved membranes, perhaps including the limiting edge of the growing phagophore.
Collapse
Affiliation(s)
- Sangeeta Nath
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Julia Dancourt
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Vladimir Shteyn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Gabriella Puente
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Wendy M. Fong
- Departments of Neurology, Pathology and Cell Biology, Columbia University, NY, NY
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Ai Yamamoto
- Departments of Neurology, Pathology and Cell Biology, Columbia University, NY, NY
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS et université de Nice, France
| | - Thomas J. Melia.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
11
|
Abstract
Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Regulation of Phosphatidylethanolamine Homeostasis—The Critical Role of CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2). Int J Mol Sci 2013; 14:2529-50. [PMID: 23354482 PMCID: PMC3588000 DOI: 10.3390/ijms14022529] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/02/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylethanolamine (PE) is the most abundant lipid on the protoplasmatic leaflet of cellular membranes. It has a pivotal role in cellular processes such as membrane fusion, cell cycle regulation, autophagy, and apoptosis. CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme in de novo biosynthesis of PE from ethanolamine and diacylglycerol by the CDP-ethanolamine Kennedy pathway. The following is a summary of the current state of knowledge on Pcyt2 and how splicing and isoform specific differences could lead to variations in functional properties in this family of enzymes. Results from the most recent studies on Pcyt2 transcriptional regulation, promoter function, autophagy, and cell growth regulation are highlighted. Recent data obtained from Pcyt2 knockout mouse models is also presented, demonstrating the essentiality of this gene in embryonic development as well as the major physiological consequences of deletion of one Pcyt2 allele. Those include development of symptoms of the metabolic syndrome such as elevated lipogenesis and lipoprotein secretion, hypertriglyceridemia, liver steatosis, obesity, and insulin resistance. The objective of this review is to elucidate the nature of Pcyt2 regulation by linking its catalytic function with the regulation of lipid and energy homeostasis.
Collapse
|
13
|
Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012; 338:1072-6. [PMID: 23112293 PMCID: PMC3682818 DOI: 10.1126/science.1227026] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells can use the autophagy pathway to defend against microbes that gain access to the cytosol or reside in pathogen-modified vacuoles. It remains unclear if pathogens have evolved specific mechanisms to manipulate autophagy. Here, we found that the intracellular pathogen Legionella pneumophila could interfere with autophagy by using the bacterial effector protein RavZ to directly uncouple Atg8 proteins attached to phosphatidylethanolamine on autophagosome membranes. RavZ hydrolyzed the amide bond between the carboxyl-terminal glycine residue and an adjacent aromatic residue in Atg8 proteins, producing an Atg8 protein that could not be reconjugated by Atg7 and Atg3. Thus, intracellular pathogens can inhibit autophagy by irreversibly inactivating Atg8 proteins during infection.
Collapse
Affiliation(s)
- Augustine Choy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Julia Dancourt
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Brian Mugo
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tamara J. O'Connor
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Ralph R. Isberg
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| |
Collapse
|