1
|
Chaturvedi KS, Hung CS, Giblin DE, Urushidani S, Austin AM, Dinauer MC, Henderson JP. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem Biol 2014; 9:551-61. [PMID: 24283977 PMCID: PMC3934373 DOI: 10.1021/cb400658k] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Many Gram-negative bacteria interact
with extracellular metal ions
by expressing one or more siderophore types. Among these, the virulence-associated
siderophore yersiniabactin (Ybt) is an avid copper chelator, forming
stable cupric (Cu(II)-Ybt) complexes that are detectable in infected
patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic
cells. This survival advantage is highly dependent upon the phagocyte
respiratory burst, during which superoxide is generated by the NADPH
oxidase complex. Chemical fractionation links this phenotype to a
previously unappreciated superoxide dismutase (SOD)-like activity
of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate
(Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt
retains catalytic activity at physiologically plausible protein concentrations.
These results reveal a new virulence-associated adaptation based upon
spontaneous assembly of a non-protein catalyst.
Collapse
Affiliation(s)
- Kaveri S. Chaturvedi
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chia S. Hung
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Daryl E. Giblin
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Saki Urushidani
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Anthony M. Austin
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Mary C. Dinauer
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jeffrey P. Henderson
- Center
for Women’s Infectious Diseases Research, ‡Division of Infectious
Diseases, §Department of Internal Medicine, ∥Department of Chemistry, ⊥Department of Pediatrics, and #Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Kenney GE, Rosenzweig AC. Chemistry and biology of the copper chelator methanobactin. ACS Chem Biol 2012; 7:260-8. [PMID: 22126187 DOI: 10.1021/cb2003913] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methanotrophic bacteria, organisms that oxidize methane, produce a small copper chelating molecule called methanobactin (Mb). Mb binds Cu(I) with high affinity and is hypothesized to mediate copper acquisition from the environment. Recent advances in Mb characterization include revision of the chemical structure of Mb from Methylosinus trichosporium OB3b and further investigation of its biophysical properties. In addition, Mb production by several other methanotroph strains has been investigated, and preliminary characterization suggests diversity in chemical composition. Initial clues into Mb biosynthesis have been obtained by identification of a putative precursor gene in the M. trichosporium OB3b genome. Finally, direct uptake of intact Mb into the cytoplasm of M. trichosporium OB3b cells has been demonstrated, and studies of the transport mechanism have been initiated. Taken together, these advances represent significant progress and set the stage for exciting new research directions.
Collapse
Affiliation(s)
- Grace E. Kenney
- Departments of Molecular Biosciences
and of Chemistry, Northwestern University, Evanston, Illinois 60208,
United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences
and of Chemistry, Northwestern University, Evanston, Illinois 60208,
United States
| |
Collapse
|