1
|
Polańska O, Szulc N, Stottko R, Olek M, Nadwodna J, Gąsior-Głogowska M, Szefczyk M. Challenges in Peptide Solubilization - Amyloids Case Study. CHEM REC 2024; 24:e202400053. [PMID: 39023378 DOI: 10.1002/tcr.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).
Collapse
Affiliation(s)
- Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Rafał Stottko
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdanska 7/9, 50-344, Wrocław, Poland
| | - Mateusz Olek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland
| | - Julita Nadwodna
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
2
|
Khorsand FR, Aziziyan F, Khajeh K. Factors influencing amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:55-83. [PMID: 38811089 DOI: 10.1016/bs.pmbts.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.
Collapse
Affiliation(s)
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Rauch-Wirth L, Renner A, Kaygisiz K, Weil T, Zimmermann L, Rodriguez-Alfonso AA, Schütz D, Wiese S, Ständker L, Weil T, Schmiedel D, Münch J. Optimized peptide nanofibrils as efficient transduction enhancers for in vitro and ex vivo gene transfer. Front Immunol 2023; 14:1270243. [PMID: 38022685 PMCID: PMC10666768 DOI: 10.3389/fimmu.2023.1270243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a groundbreaking immunotherapy for cancer. However, the intricate and costly manufacturing process remains a hurdle. Improving the transduction rate is a potential avenue to cut down costs and boost therapeutic efficiency. Peptide nanofibrils (PNFs) serve as one such class of transduction enhancers. PNFs bind to negatively charged virions, facilitating their active engagement by cellular protrusions, which enhances virion attachment to cells, leading to increased cellular entry and gene transfer rates. While first-generation PNFs had issues with aggregate formation and potential immunogenicity, our study utilized in silico screening to identify short, endogenous, and non-immunogenic peptides capable of enhancing transduction. This led to the discovery of an 8-mer peptide, RM-8, which forms PNFs that effectively boost T cell transduction rates by various retroviral vectors. A subsequent structure-activity relationship (SAR) analysis refined RM-8, resulting in the D4 derivative. D4 peptide is stable and assembles into smaller PNFs, avoiding large aggregate formation, and demonstrates superior transduction rates in primary T and NK cells. In essence, D4 PNFs present an economical and straightforward nanotechnological tool, ideal for refining ex vivo gene transfer in CAR-T cell production and potentially other advanced therapeutic applications.
Collapse
Affiliation(s)
- Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Renner
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Zimmermann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Armando A. Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dominik Schmiedel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Fileš I, Andersson V. Automated sample preparation of protein solid dosage forms: Novel application for the tablet processing workstation. SLAS Technol 2023; 28:258-263. [PMID: 36870536 DOI: 10.1016/j.slast.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Biological macromolecule solid dosage forms represent the frontier of orally administered pharmaceuticals. Analysis of these drug products poses new challenges compared to traditional small molecule tablets. In this study we demonstrate the first, to our knowledge, automated Tablet Processing Workstation (TPW) sample preparation of large molecule tablets. Tablets containing a modified version of human insulin were tested for content uniformity and the automated method was successfully validated for recovery, carryover and displayed manual method equivalency in repeatability and in-process stability. Per TPW's ability to process one sample sequentially, the total analysis cycle time is, in fact, increased. In lieu, a net gain in scientist productivity is realized by enabling continuous operation reducing analytical scientist labor time by 71% compared to manually conducted sample preparation.
Collapse
Affiliation(s)
- Ivana Fileš
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Vincent Andersson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark.
| |
Collapse
|
5
|
Lu Y, Wang C, Jiang B, Sun CC, Hoag SW. Effects of compaction and storage conditions on stability of intravenous immunoglobulin - Implication on developing oral tablets of biologics. Int J Pharm 2021; 604:120737. [PMID: 34048928 DOI: 10.1016/j.ijpharm.2021.120737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
Biological products, such as therapeutic proteins, vaccines and cell - based therapeutics have a rapidly growing global market. Monoclonal antibody represents a major portion of the biologics market. For biologics that target gastrointestinal tract, the oral delivery route offers many advantages, such as better patient compliance, easy administration and increased stability, over the parental route of administration. To lay the ground work for the oral delivery of biologics, we studied the solid state properties and effects of compaction pressure, particle size, and storage relative humidity on the stability of immunoglobulin G (IVIG). We employed complementary analytical and biophysical techniques, such as size exclusion chromatography and Dynamic light scattering to characterize the aggregates, circular dichroism and solid state Fourier-transform infrared spectroscopy to evaluate protein secondary structure and nano-DSC to probe thermal stability of protein conformations. Our results showed storage relative humidity could induce conformational changes and aggregation of IVIG. However, the IVIG binding activity did not significantly change with relative humidity. The commonly used compaction pressures did not promote protein aggregation, but noticeably reduced binding activity.
Collapse
Affiliation(s)
- Yuwei Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MN 21201, United States
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bowen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MN 21201, United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Stephen W Hoag
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MN 21201, United States.
| |
Collapse
|
6
|
Harsolia RS, Kanwar A, Gour S, Kumar V, Kumar V, Bansal R, Kumar S, Singh M, Yadav JK. Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. Int J Biol Macromol 2020; 163:702-710. [PMID: 32650012 DOI: 10.1016/j.ijbiomac.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The aggregation of β-crystallins in the human eye lens constitutes a critical step during the development of cataract. We anticipated that the presence of Aggregation-Prone Regions (APRs) in their primary structure, which might be responsible for conformational change required for the self-assembly. To examine the presence of APRs, we systematically analyzed the primary structures of β-crystallins. Out of seven subtypes, the βB1-crystallin found to possess the highest aggregation score with 9 APRs in its primary structure. To confirm the amyloidogenic nature of these newly identified APRs, we further studied the aggregation behavior of one of the APRs spanning from 174 to 180 residues (174LWVYGFS180) of βB1-crystallin, which is referred as βB1(174-180). Under in vitro conditions, the synthetic analogue of βB1(174-180) peptide formed visible aggregates and displayed high Congo red (CR) bathochromic shift, Thioflavin T (ThT) binding and fibrilar morphology under transmission electron microscopy, which are the typical characteristics of amyloids. Further, the aggregated βB1(174-180) was found to induce aggregation of the soluble fraction of proteins isolated from the human cataractous lens. This observation suggests that the presence of APRs in βB1-crystallin might be serving as one of the intrinsic supplementary factors responsible for constitutive aggregation behavior of βB1-crystallin and development of cataract.
Collapse
Affiliation(s)
- Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Ambika Kanwar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vikas Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Rati Bansal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Suman Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
7
|
Kucheryavykh LY, Ortiz-Rivera J, Kucheryavykh YV, Zayas-Santiago A, Diaz-Garcia A, Inyushin MY. Accumulation of Innate Amyloid Beta Peptide in Glioblastoma Tumors. Int J Mol Sci 2019; 20:ijms20102482. [PMID: 31137462 PMCID: PMC6567111 DOI: 10.3390/ijms20102482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Immunostaining with specific antibodies has shown that innate amyloid beta (Aβ) is accumulated naturally in glioma tumors and nearby blood vessels in a mouse model of glioma. In immunofluorescence images, Aβ peptide coincides with glioma cells, and enzyme-linked immunosorbent assay (ELISA) have shown that Aβ peptide is enriched in the membrane protein fraction of tumor cells. ELISAs have also confirmed that the Aβ(1–40) peptide is enriched in glioma tumor areas relative to healthy brain areas. Thioflavin staining revealed that at least some amyloid is present in glioma tumors in aggregated forms. We may suggest that the presence of aggregated amyloid in glioma tumors together with the presence of Aβ immunofluorescence coinciding with glioma cells and the nearby vasculature imply that the source of Aβ peptides in glioma can be systemic Aβ from blood vessels, but this question remains unresolved and needs additional studies.
Collapse
Affiliation(s)
- Lilia Y Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Yuriy V Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Astrid Zayas-Santiago
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Amanda Diaz-Garcia
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| | - Mikhail Y Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, PO Box 60327, Bayamon, PR 00960-6032, USA.
| |
Collapse
|
8
|
Evers A, Pfeiffer-Marek S, Bossart M, Heubel C, Stock U, Tiwari G, Gebauer B, Elshorst B, Pfenninger A, Lukasczyk U, Hessler G, Kamm W, Wagner M. Peptide Optimization at the Drug Discovery-Development Interface: Tailoring of Physicochemical Properties Toward Specific Formulation Requirements. J Pharm Sci 2019; 108:1404-1414. [DOI: 10.1016/j.xphs.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
|
9
|
Stevenson H, Jaggard M, Akhbari P, Vaghela U, Gupte C, Cann P. The role of denatured synovial fluid proteins in the lubrication of artificial joints. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol 2018; 118:1157-1167. [DOI: 10.1016/j.ijbiomac.2018.06.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
|
11
|
Wen L, Lyu M, Xiao H, Lan H, Zuo Z, Yin Z. Protein Aggregation and Performance Optimization Based on Microconformational Changes of Aromatic Hydrophobic Regions. Mol Pharm 2018; 15:2257-2267. [PMID: 29694051 DOI: 10.1021/acs.molpharmaceut.8b00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lili Wen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Man Lyu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Huashuai Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Hairong Lan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| |
Collapse
|
12
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
13
|
Klus P, Ponti RD, Livi CM, Tartaglia GG. Protein aggregation, structural disorder and RNA-binding ability: a new approach for physico-chemical and gene ontology classification of multiple datasets. BMC Genomics 2015; 16:1071. [PMID: 26673865 PMCID: PMC4681139 DOI: 10.1186/s12864-015-2280-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 01/27/2023] Open
Abstract
Background Comparison between multiple protein datasets requires the choice of an appropriate reference system and a number of variables to describe their differences. Here we introduce an innovative approach to discriminate multiple protein datasets (multiCM) and to measure enrichments in gene ontology terms (cleverGO) using semantic similarities. Results We illustrate the powerfulness of our approach by investigating the links between RNA-binding ability and other protein features, such as structural disorder and aggregation, in S. cerevisiae, C. elegans, M. musculus and H. sapiens. Our results are in striking agreement with available experimental evidence and unravel features that are key to understand the mechanisms regulating cellular homeostasis. Conclusions In an intuitive way, multiCM and cleverGO provide accurate classifications of physico-chemical features and annotations of biological processes, molecular functions and cellular components, which is extremely useful for the discovery and characterization of new trends in protein datasets. The multiCM and cleverGO can be freely accessed on the Web at http://www.tartaglialab.com/cs_multi/submission and http://www.tartaglialab.com/GO_analyser/universal. Each of the pages contains links to the corresponding documentation and tutorial. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2280-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petr Klus
- Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Riccardo Delli Ponti
- Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Carmen Maria Livi
- Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Gene Function and Evolution, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluís Companys, 08010, Barcelona, Spain.
| |
Collapse
|
14
|
Neurodegeneration and Cancer: Where the Disorder Prevails. Sci Rep 2015; 5:15390. [PMID: 26493371 PMCID: PMC4615981 DOI: 10.1038/srep15390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022] Open
Abstract
It has been reported that genes up-regulated in cancer are often down-regulated in neurodegenerative disorders and vice versa. The fact that apparently unrelated diseases share functional pathways suggests a link between their etiopathogenesis and the properties of molecules involved. Are there specific features that explain the exclusive association of proteins with either cancer or neurodegeneration? We performed a large-scale analysis of physico-chemical properties to understand what characteristics differentiate classes of diseases. We found that structural disorder significantly distinguishes proteins up-regulated in neurodegenerative diseases from those linked to cancer. We also observed high correlation between structural disorder and age of onset in Frontotemporal Dementia, Parkinson's and Alzheimer's diseases, which strongly supports the role of protein unfolding in neurodegenerative processes.
Collapse
|
15
|
Luo Q, Dong Z, Hou C, Liu J. Protein-based supramolecular polymers: progress and prospect. Chem Commun (Camb) 2014; 50:9997-10007. [DOI: 10.1039/c4cc03143a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|