1
|
Zhou J, Wang M, Carrillo C, Zhu Z, Brncic M, Berrada H, Barba FJ. Impact of Pressurized Liquid Extraction and pH on Protein Yield, Changes in Molecular Size Distribution and Antioxidant Compounds Recovery from Spirulina. Foods 2021; 10:foods10092153. [PMID: 34574263 PMCID: PMC8468321 DOI: 10.3390/foods10092153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
The research aims to extract nutrients and bioactive compounds from spirulina using a non-toxic, environmentally friendly and efficient method—Pressurized Liquid Extraction (PLE). In this work, Response Surface Methodology (RSM)–Central Composite Design (CCD) was used to evaluate and optimize the extraction time (5–15 min), temperature (20–60 °C) and pH (4–10) during PLE extraction (103.4 bars). The multi-factor optimization results of the RSM-CCD showed that under the pressure of 103.4 bars, the optimal conditions to recover the highest content of bioactive compounds were 10 min, 40 °C and pH 4. Furthermore, the compounds and antioxidant capacity of PLE and non-pressurized extraction extracts were compared. The results showed that under the optimal extraction conditions (10 min, 40 °C and pH 4), PLE significantly improved the antioxidant capacity (2870.5 ± 153.6 µM TE), protein yield (46.8 ± 3.1%), chlorophyll a (1.46 ± 0.04 mg/g), carotenoids (0.12 ± 0.01 mg/g), total polyphenols (11.49 ± 0.04 mg/g) and carbohydrates content (78.42 ± 1.40 mg/g) of the extracts compared with non-pressurized extraction (p < 0.05). The protein molecular distribution of the extracts was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the results showed that there were more small-molecule proteins in PLE extracts. Moreover, Liquid Chromatography Triple Time of Flight Mass Spectrometry (TOF–LC–MS–MS) was used to analyze the phenolic profile of the extracts, and the results showed the extracts were rich on phenolic compounds, such as p-coumaric acid and cinnamic acid being the predominant phenolic compounds in the PLE extract. This indicates that PLE can promote the extraction of bioactive compounds from Spirulina, which is of great significance for the application of PLE technology to obtain active substances from marine algae resources.
Collapse
Affiliation(s)
- Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (M.W.); (H.B.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (M.W.); (H.B.)
| | - Celia Carrillo
- Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Correspondence: (C.C.); (F.J.B.); Tel.: +34-947-259506 (C.C.); +34-963-544-972 (F.J.B.)
| | - Zhenzhou Zhu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Mladen Brncic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Houda Berrada
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (M.W.); (H.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (M.W.); (H.B.)
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain
- Correspondence: (C.C.); (F.J.B.); Tel.: +34-947-259506 (C.C.); +34-963-544-972 (F.J.B.)
| |
Collapse
|
2
|
Carreira-Casais A, Otero P, Garcia-Perez P, Garcia-Oliveira P, Pereira AG, Carpena M, Soria-Lopez A, Simal-Gandara J, Prieto MA. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9153. [PMID: 34501743 PMCID: PMC8431298 DOI: 10.3390/ijerph18179153] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
The increase in life expectancy has led to the appearance of chronic diseases and interest in healthy aging, in turn promoting a growing interest in bioactive compounds (BCs) and functional ingredients. There are certain foods or products rich in functional ingredients, and algae are one of them. Algae consumption has been nominal in Europe until now. However, in recent years, it has grown significantly, partly due to globalization and the adoption of new food trends. With the aim of obtaining BCs from foods, multiple methods have been proposed, ranging from conventional ones, such as maceration or Soxhlet extraction, to more innovative methods, e.g., ultrasound-assisted extraction (UAE). UAE constitutes a novel method, belonging to so-called green chemistry, that enables the extraction of BCs requiring lower amounts of solvent and energy costs, preserving the integrity of such molecules. In recent years, this method has been often used for the extraction of different BCs from a wide range of algae, especially polysaccharides, such as carrageenans and alginate; pigments, including fucoxanthin, chlorophylls, or β-carotene; and phenolic compounds, among others. In this way, the application of UAE to marine algae is an efficient and sustainable strategy to pursue their deep characterization as a new source of BCs, especially suitable for vegetarian and vegan diets.
Collapse
Affiliation(s)
- Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.C.-C.); (P.O.); (P.G.-P.); (P.G.-O.); (A.G.P.); (M.C.); (A.S.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Pinteus S, Silva J, Alves C, Horta A, Thomas OP, Pedrosa R. Antioxidant and Cytoprotective Activities of Fucus spiralis Seaweed on a Human Cell in Vitro Model. Int J Mol Sci 2017; 18:E292. [PMID: 28146076 PMCID: PMC5343828 DOI: 10.3390/ijms18020292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/17/2022] Open
Abstract
Antioxidants play an important role as Reactive Oxygen Species (ROS) chelating agents and, therefore, the screening for potent antioxidants from natural sources as potential protective agents is of great relevance. The main aim of this study was to obtain antioxidant-enriched fractions from the common seaweed Fucus spiralis and evaluate their activity and efficiency in protecting human cells (MCF-7 cells) on an oxidative stress condition induced by H₂O₂. Five fractions, F1-F5, were obtained by reversed-phase vacuum liquid chromatography. F3, F4 and F5 revealed the highest phlorotannin content, also showing the strongest antioxidant effects. The cell death induced by H₂O₂ was reduced by all fractions following the potency order F4 > F2 > F3 > F5 > F1. Only fraction F4 completely inhibited the H₂O₂ effect. To understand the possible mechanisms of action of these fractions, the cellular production of H₂O₂, the mitochondrial membrane potential and the caspase 9 activity were studied. Fractions F3 and F4 presented the highest reduction on H₂O₂ cell production. All fractions decreased both caspase-9 activity and cell membrane depolarization (except F1). Taken all together, the edible F. spiralis reveal that they provide protection against oxidative stress induced by H₂O₂ on the human MCF-7 cellular model, probably acting as upstream blockers of apoptosis.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - André Horta
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland.
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
5
|
Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis. Molecules 2014; 19:5981-98. [PMID: 24818577 PMCID: PMC6271230 DOI: 10.3390/molecules19055981] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022] Open
Abstract
Although fucoidan has been shown to exert anticancer activity against several types of cancer cell lines, no reports have explored fucoidan-affected cell growth in human urinary bladder cancer cells. In this study, we investigated the anti-proliferative effects of fucoidan in human bladder cancer T24 cells. Our results indicated that fucoidan decreased the viability of T24 cells through the induction of G1 arrest and apoptosis. Fucoidan-induced G1 arrest is associated with the enhanced expression of the Cdk inhibitor p21WAF1/CIP1 and dephosphorylation of the pRB along with enhanced binding of p21 to Cdk4/6 as well as pRB to the transcription factor E2Fs. Further investigations showed the loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol, proving mitochondrial dysfunction upon fucoidan treatment with a corresponding increase in the Bax/Bcl-2 expression ratio. Fucoidan-triggered apoptosis was also accompanied by the up-regulation of Fas and truncated Bid as well as the sequential activation of caspase-8. Furthermore, a significant increased activation of caspase-9/-3 was detected in response to fucoidan treatment with the decreased expression of IAPs and degradation of PARP, whereas a pan-caspase inhibitor significantly suppressed apoptosis and rescued the cell viability reduction. In conclusion, these observations suggest that fucoidan attenuates G1-S phase cell cycle progression and serves as an important mediator of crosstalk between caspase-dependent intrinsic and extrinsic apoptotic pathways in T24 cells.
Collapse
|
6
|
Abstract
Seaweeds are a characteristic part of the traditional diet in countries such as Japan and Korea; these countries also have a lower prevalence of metabolic syndrome than countries such as the USA and Australia. This suggests that seaweeds may contain compounds that reduce the characteristic signs of obesity, diabetes, hypertension, fatty liver and inflammation in the metabolic syndrome. Potentially bioactive compounds from seaweeds include polysaccharides, peptides, pigments, minerals and omega-3 fatty acids. This review emphasises current research on these compounds in isolated cells, animal models and patients. Key problems for future research include chemical characterisation of the bioactive principles, defining pharmacological responses in all aspects of the metabolic syndrome, determining if a therapeutic dose has been administered, and defining oral bioavailability of the active ingredients.
Collapse
|