1
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
2
|
Knecht H, Johnson N, Bienz MN, Brousset P, Memeo L, Shifrin Y, Alikhah A, Louis SF, Mai S. Analysis by TeloView ® Technology Predicts the Response of Hodgkin's Lymphoma to First-Line ABVD Therapy. Cancers (Basel) 2024; 16:2816. [PMID: 39199588 PMCID: PMC11352807 DOI: 10.3390/cancers16162816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Classic Hodgkin's lymphoma (cHL) is a curable cancer with a disease-free survival rate of over 10 years. Over 80% of diagnosed patients respond favorably to first-line chemotherapy, but few biomarkers exist that can predict the 15-20% of patients who experience refractory or early relapsed disease. To date, the identification of patients who will not respond to first-line therapy based on disease staging and traditional clinical risk factor analysis is still not possible. Three-dimensional (3D) telomere analysis using the TeloView® software platform has been shown to be a reliable tool to quantify genomic instability and to inform on disease progression and patients' response to therapy in several cancers. It also demonstrated telomere dysfunction in cHL elucidating biological mechanisms related to disease progression. Here, we report 3D telomere analysis on a multicenter cohort of 156 cHL patients. We used the cohort data as a training data set and identified significant 3D telomere parameters suitable to predict individual patient outcomes at the point of diagnosis. Multivariate analysis using logistic regression procedures allowed for developing a predictive scoring model using four 3D telomere parameters as predictors, including the proportion of t-stumps (very short telomeres), which has been a prominent predictor for cHL patient outcome in a previously published study using TeloView® analysis. The percentage of t-stumps was by far the most prominent predictor to identify refractory/relapsing (RR) cHL prior to initiation of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) therapy. The model characteristics include an AUC of 0.83 in ROC analysis and a sensitivity and specificity of 0.82 and 0.78 respectively.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Nathalie Johnson
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Marc N. Bienz
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Pierre Brousset
- Toulouse Cancer Center, Université de Toulouse, 31000 Toulouse, France;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Yulia Shifrin
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Asieh Alikhah
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sherif F. Louis
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N, Canada;
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. Int J Mol Sci 2020; 21:ijms21228539. [PMID: 33198352 PMCID: PMC7696868 DOI: 10.3390/ijms21228539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mechanisms of recurrence in oligodendrogliomas are poorly understood. Recurrence might be driven by telomere dysfunction-mediated genomic instability. In a pilot study, we investigated ten patients with oligodendrogliomas at the time of diagnosis (first surgery) and after recurrence (second surgery) using three-dimensional nuclear telomere analysis performed with quantitative software TeloView® (Telo Genomics Corp, Toronto, Ontario, Canada). 1p/19q deletion status of each patient was determined by fluorescent in situ hybridization on touch preparation slides. We found that a very specific 3D telomeric profile was associated with two pathways of recurrence in oligodendrogliomas independent of their 1p/19q status: a first group of 8 patients displayed significantly different 3D telomere profiles between both surgeries (p < 0.0001). Their recurrence happened at a mean of 231.375 ± 117.42 days and a median time to progression (TTP) of 239 days, a period defined as short-term recurrence; and a second group of three patients displayed identical 3D telomere profiles between both surgery samples (p > 0.05). Their recurrence happened at a mean of 960.666 ± 86.19 days and a median TTP of 930 days, a period defined as long-term recurrence. Our results suggest a potential link between nuclear telomere architecture and telomere dysfunction with time to recurrence in oligodendrogliomas, independently of the 1p/19q status.
Collapse
|
4
|
Drachenberg D, Awe JA, Rangel Pozzo A, Saranchuk J, Mai S. Advancing Risk Assessment of Intermediate Risk Prostate Cancer Patients. Cancers (Basel) 2019; 11:cancers11060855. [PMID: 31226731 PMCID: PMC6627662 DOI: 10.3390/cancers11060855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
The individual risk to progression is unclear for intermediate risk prostate cancer patients. To assess their risk to progression, we examined the level of genomic instability in circulating tumor cells (CTCs) using quantitative three-dimensional (3D) telomere analysis. Data of CTCs from 65 treatment-naïve patients with biopsy-confirmed D’Amico-defined intermediate risk prostate cancer were compared to radical prostatectomy pathology results, which provided a clinical endpoint to the study and confirmed pre-operative pathology or demonstrated upgrading. Hierarchical centroid cluster analysis of 3D pre-operative CTC telomere profiling placed the patients into three subgroups with different potential risk of aggressive disease. Logistic regression modeling of the risk of progression estimated odds ratios with 95% confidence interval (CI) and separated patients into “stable” vs. “risk of aggressive” disease. The receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 0.77, while prostate specific antigen (PSA) (AUC of 0.59) and Gleason 3 + 4 = 7 vs. 4 + 3 = 7 (p > 0.6) were unable to predict progressive or stable disease. The data suggest that quantitative 3D telomere profiling of CTCs may be a potential tool for assessing a patient’s prostate cancer pre-treatment risk.
Collapse
Affiliation(s)
- Darrel Drachenberg
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Julius A Awe
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Aline Rangel Pozzo
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Jeff Saranchuk
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Sabine Mai
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
5
|
Gadji M, Pozzo AR. From cellular morphology to molecular and epigenetic anomalies of myelodysplastic syndromes. Genes Chromosomes Cancer 2018; 58:474-483. [PMID: 30303583 DOI: 10.1002/gcc.22689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a myeloid neoplasm with a propensity for natural evolution or transformation to acute leukemias (AL) over time. Mechanisms for MDS transformation to AL remain poorly understood but are related to genomic instability, which affects the production of the different cell lineages. Genomic instability is also generated by dysfunctional telomeres. Indeed telomeres, the protective ends of chromosomes are the backbone of genome stability. Nuclear telomere remodeling is an early indicator of nuclear remodeling preceding the onset of genomic instability and MDS. This review aims to revisit the pathogenesis and pathophysiology of MDS from morphology and cytogenetics to molecular and epigenetic mechanisms. Furthermore, this review will highlight and discuss recent breakthroughs in dysfunctional telomeres and nuclear telomere architecture roles in the pathogenesis and physiopathology of MDS in the global context of genomic instability.
Collapse
Affiliation(s)
- Macoura Gadji
- Department of Physiology and Pathophysiology, University of Manitoba (UfM), Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba (CCMB), Winnipeg, Manitoba, Canada.,Faculty of Medicine, Pharmacy, and Odontology (FMPO), Service of Hematology, National Centre of Blood Transfusion (CNTS), University Cheikh Anta Diop of Dakar (UCAD), Dakar, Senegal
| | - Aline Rangel Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba (UfM), Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba (CCMB), Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Garcia A, Huang D, Righolt A, Righolt C, Kalaw MC, Mathur S, McAvoy E, Anderson J, Luedke A, Itorralba J, Mai S. Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients. J Cell Physiol 2017; 232:2387-2395. [PMID: 27996096 PMCID: PMC5485033 DOI: 10.1002/jcp.25751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023]
Abstract
The advent of super-resolution microscopy allowed for new insights into cellular and physiological processes of normal and diseased cells. In this study, we report for the first time on the super-resolved DNA structure of buccal cells from patients with Alzheimer's disease (AD) versus age- and gender-matched healthy, non-caregiver controls. In this super-resolution study cohort of 74 participants, buccal cells were collected and their spatial DNA organization in the nucleus examined by 3D Structured Illumination Microscopy (3D-SIM). Quantitation of the super-resolution DNA structure revealed that the nuclear super-resolution DNA structure of individuals with AD significantly differs from that of their controls (p < 0.05) with an overall increase in the measured DNA-free/poor spaces. This represents a significant increase in the interchromatin compartment. We also find that the DNA structure of AD significantly differs in mild, moderate, and severe disease with respect to the DNA-containing and DNA-free/poor spaces. We conclude that whole genome remodeling is a feature of buccal cells in AD.
Collapse
Affiliation(s)
- Angeles Garcia
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - David Huang
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Amanda Righolt
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Christiaan Righolt
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Maria Carmela Kalaw
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Shubha Mathur
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Elizabeth McAvoy
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - James Anderson
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Angela Luedke
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Justine Itorralba
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Sabine Mai
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| |
Collapse
|
7
|
Balc'h EL, Grandin N, Demattei MV, Guyétant S, Tallet A, Pagès JC, Ouaissi M, Lecomte T, Charbonneau M. Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis. Int J Mol Sci 2017; 18:ijms18091871. [PMID: 28850092 PMCID: PMC5618520 DOI: 10.3390/ijms18091871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.
Collapse
Affiliation(s)
- Eric Le Balc'h
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Nathalie Grandin
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Marie-Véronique Demattei
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Serge Guyétant
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Anne Tallet
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Jean-Christophe Pagès
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Mehdi Ouaissi
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Thierry Lecomte
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Michel Charbonneau
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
8
|
Taylor‐Kashton C, Lichtensztejn D, Baloglu E, Senapedis W, Shacham S, Kauffman MG, Kotb R, Mai S. XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells. J Cell Physiol 2016; 231:2711-9. [PMID: 26991404 PMCID: PMC5111786 DOI: 10.1002/jcp.25378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Previous work has shown that the three-dimensional (3D) nuclear organization of telomeres is altered in cancer cells and the degree of alterations coincides with aggressiveness of disease. Nuclear pores are essential for spatial genome organization and gene regulation and XPO1 (exportin 1/CRM1) is the key nuclear export protein. The Selective Inhibitor of Nuclear Export (SINE) compounds developed by Karyopharm Therapeutics (KPT-185, KPT-330/selinexor, and KPT-8602) inhibit XPO1 nuclear export function. In this study, we investigated whether XPO1 inhibition has downstream effects on the 3D nuclear organization of the genome. This was assessed by measuring the 3D telomeric architecture of normal and tumor cells in vitro and ex vivo. Our data demonstrate for the first time a rapid and preferential disruption of the 3D nuclear organization of telomeres in tumor cell lines and in primary cells ex vivo derived from treatment-naïve newly diagnosed multiple myeloma patients. Normal primary cells in culture as well as healthy lymphocyte control cells from the same patients were minimally affected. Using both lymphoid and non-lymphoid tumor cell lines, we found that the downstream effects on the 3D nuclear telomere structure are independent of tumor type. We conclude that the 3D nuclear organization of telomeres is a sensitive indicator of cellular response when treated with XPO1 inhibitors. J. Cell. Physiol. 231: 2711-2719, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl Taylor‐Kashton
- Manitoba Institute of Cell BiologyCancerCare ManitobaUniversity of ManitobaWinnipegCanada
| | - Daniel Lichtensztejn
- Manitoba Institute of Cell BiologyCancerCare ManitobaUniversity of ManitobaWinnipegCanada
| | | | | | | | | | | | - Sabine Mai
- Manitoba Institute of Cell BiologyCancerCare ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
9
|
Caria P, Cantara S, Frau DV, Pacini F, Vanni R, Dettori T. Genetic Heterogeneity of HER2 Amplification and Telomere Shortening in Papillary Thyroid Carcinoma. Int J Mol Sci 2016; 17:E1759. [PMID: 27775641 PMCID: PMC5085783 DOI: 10.3390/ijms17101759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 02/05/2023] Open
Abstract
Extensive research is dedicated to understanding if sporadic and familial papillary thyroid carcinoma are distinct biological entities. We have previously demonstrated that familial papillary thyroid cancer (fPTC) cells exhibit short relative telomere length (RTL) in both blood and tissues and that these features may be associated with chromosome instability. Here, we investigated the frequency of HER2 (Human Epidermal Growth Factor Receptor 2) amplification, and other recently reported genetic alterations in sporadic PTC (sPTC) and fPTC, and assessed correlations with RTL and BRAF mutational status. We analyzed HER2 gene amplification and the integrity of ALK, ETV6, RET, and BRAF genes by fluorescence in situ hybridization in isolated nuclei and paraffin-embedded formalin-fixed sections of 13 fPTC and 18 sPTC patients. We analyzed BRAFV600E mutation and RTL by qRT-PCR. Significant HER2 amplification (p = 0.0076), which was restricted to scattered groups of cells, was found in fPTC samples. HER2 amplification in fPTCs was invariably associated with BRAFV600E mutation. RTL was shorter in fPTCs than sPTCs (p < 0.001). No rearrangements of other tested genes were observed. These findings suggest that the association of HER2 amplification with BRAFV600E mutation and telomere shortening may represent a marker of tumor aggressiveness, and, in refractory thyroid cancer, may warrant exploration as a site for targeted therapy.
Collapse
Affiliation(s)
- Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena 53100, Italy.
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Furio Pacini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena 53100, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| |
Collapse
|
10
|
Kuzyk A, Gartner J, Mai S. Identification of Neuroblastoma Subgroups Based on Three-Dimensional Telomere Organization. Transl Oncol 2016; 9:348-56. [PMID: 27567959 PMCID: PMC5006808 DOI: 10.1016/j.tranon.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
Using 3D telomere quantitative fluorescence in situ hybridization, we determined the 3D telomere organization of 74 neuroblastoma tissue samples. Hierarchical cluster analysis of the measured telomere parameters identified three subgroups from our patient cohort. These subgroups have unique telomere profiles based on telomere length and nuclear architecture. Subgroups with higher levels of telomere dysfunction were comprised of tumors with greater numbers of telomeres, telomeric aggregates, and short telomeres (P<.0001). Tumors with greater telomere dysfunction were associated with unfavorable tumor characteristics (greater age at diagnosis, unfavorable histology, higher stage of disease, MYCN amplification, and higher MYCN expression) and poor prognostic risk (P<.001). Subgroups with greater telomere dysfunction also had higher intratumor heterogeneity. MYCN overexpression in two neuroblastoma cell lines with constitutively low MYCN expression induced changes in their telomere profile that were consistent with increased telomere dysfunction; this illustrates a functional relationship between MYCN and 3D telomere organization. This study demonstrates the ability to classify neuroblastomas based on the level of telomere dysfunction, which is a novel approach for this cancer.
Collapse
Affiliation(s)
- Alexandra Kuzyk
- Manitoba Institute of Cell Biology/The Research Institute of Oncology and Hematology, Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Gartner
- Departments of Pathology and Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology/The Research Institute of Oncology and Hematology, Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Sunpaweravong S, Sunpaweravong P, Sathitruangsak C, Mai S. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells. Dis Esophagus 2016; 29:307-13. [PMID: 25625311 DOI: 10.1111/dote.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture between the ESCC and normal epithelial tissues. However, there were no differences observed between the young and old patients.
Collapse
Affiliation(s)
- S Sunpaweravong
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - P Sunpaweravong
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - C Sathitruangsak
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - S Mai
- Genomic Center for Cancer Research and Diagnosis, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Kuzyk A, Booth S, Righolt C, Mathur S, Gartner J, Mai S. MYCN overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuroblastoma tumors and cell lines. Genes Chromosomes Cancer 2015; 54:616-28. [PMID: 26171843 DOI: 10.1002/gcc.22273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022] Open
Abstract
MYCN amplification and MYCN overexpression are poor prognostic factors in neuroblastoma. Tumors with unbalanced chromosome arm 17q gain are often associated with MYCN amplification; however, the relationship between chromosome 17 copy number status and MYCN expression is not known. We investigated the relationship between MYCN expression and chromosome 17 copy number, nuclear location, and gene expression. By performing dual-colored fluorescence in situ hybridization on 16 primary neuroblastomas, we found that those with unbalanced gain of 17q have high MYCN expression, those with no gain have medium expression, and those with numerical gain have low expression (P < 0.0001). We also found that the nuclear location of 17q correlates with chromosome 17 copy number status: copies in tumors with unbalanced gain and no gain of chromosome 17 occupy a more central location than those in tumors with balanced gain (P < 0.0001). We show that a more central nuclear location of 17q coincides with increased expression of genes found within this chromosome arm. To further understand the association between MYCN expression and chromosome 17, we overexpressed MYCN in two low-expressing MYCN cell lines, SHEP and GIMEN. We found that both cell lines had an unbalanced gain of chromosome 17q, a more central nuclear location of the region and increased expression of the 17q genes. Therefore, this study indicates, for the first time, a functional relationship between MYCN overexpression and the gain of 17q in neuroblastoma.
Collapse
Affiliation(s)
- Alexandra Kuzyk
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Samuel Booth
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christiaan Righolt
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shubha Mathur
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John Gartner
- Department of Pathology, University of Manitoba, Health Sciences Centre, Winnipeg, MB, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Voldgorn YI, Adilgereeva EP, Nekrasov ED, Lavrov AV. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells. PLoS One 2015; 10:e0118350. [PMID: 25775427 PMCID: PMC4361746 DOI: 10.1371/journal.pone.0118350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022] Open
Abstract
Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.
Collapse
Affiliation(s)
- Yana I. Voldgorn
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
- State Budgetary Educational Institution of Higher Professional Education “Russian National Research Medical University named after N.I. Pirogov” of Ministry of Health of the Russian Federation, Russia, 117997, Moscow, Ostrovityanova str., 1
| | - Elmira P. Adilgereeva
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
| | - Evgeny D. Nekrasov
- Moscow Institute of Physics and Technology (State University), Russia, 141700, Moscow Region, Dolgoprudny, Institutskiy per., 9
| | - Alexander V. Lavrov
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
- State Budgetary Educational Institution of Higher Professional Education “Russian National Research Medical University named after N.I. Pirogov” of Ministry of Health of the Russian Federation, Russia, 117997, Moscow, Ostrovityanova str., 1
- * E-mail:
| |
Collapse
|
14
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
MYC dysregulation initiates a dynamic process of genomic instability that is linked to tumor initiation. Early studies using MYC-carrying retroviruses showed that these viruses were potent transforming agents. Cell culture models followed that addressed the role of MYC in transformation. With the advent of MYC transgenic mice, it became obvious that MYC deregulation alone was sufficient to initiate B-cell neoplasia in mice. More than 70% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus. These changes set the stage for the dynamic genomic rearrangements that are associated with cellular transformation.
Collapse
Affiliation(s)
- Alexandra Kuzyk
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
16
|
Three-dimensional Nuclear Telomere Organization in Multiple Myeloma. Transl Oncol 2013; 6:749-56. [PMID: 24466378 DOI: 10.1593/tlo.13613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is preceded by monoclonal gammopathy of undetermined significance (MGUS). Up to date, it is difficult to predict an individual's time to disease progression and the treatment response. To examine whether the nuclear telomeric architecture will unravel some of these questions, we carried out. Three-dimensional (3D) telomere analysis on samples from patients diagnosed with MGUS and MM, as well as from patients who went into relapse. Telomere signal intensity, number of telomere aggregates, nuclear volume, and the overall nuclear telomere distribution (a/c ratio) were analyzed. The telomeric profiles allowed for the differentiation of the disease stages. The telomeric profiles of myeloma cells obtained from blood and bone marrow aspirates were identical. Based on this study, we discuss the use of 3D telomere profiling as a potential future tool for risk stratification and personalized treatment decisions.
Collapse
|
17
|
Gadji M, Crous-Tsanaclis AM, Mathieu D, Mai S, Fortin D, Drouin R. A new der(1;7)(q10;p10) leading to a singular 1p loss in a case of glioblastoma with oligodendroglioma component. Neuropathology 2013; 34:170-8. [PMID: 24118308 DOI: 10.1111/neup.12060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 01/07/2023]
Abstract
The combined 1p-/19q- deletions in oligodendrogliomas originate from translocation between both chromosomes. In the few cases of oligoastrocytomas and glioblastomas with an oligodendroglioma component (GBMO) where only 1p deletion was described, the origin remains unknown. We report the first case of GBMO, in which a single 1p deletion was detected and was linked to a translocation between chromosomes 1 and 7. Fresh surgical specimens were collected during surgery and the samples were used for cell culture, touch preparation smear slides (TP slides) and DNA extraction. Peripheral venous blood was also collected from the patient. G-banding using Trypsin and stained with Giemsa (GTG) banding and karyotyping were performed and 1p-/19q-, TP53, PTEN and c-MYC were analyzed by fluorescent in situ hybridization (FISH). Multicolor FISH (mFISH) and microsatellites analyses were also performed to complete the investigation. Three-dimensional quantitative FISH (3D-QFISH) of telomeres was performed on nuclei from TP slides and analyzed using TeloView(TM) to determine whether the 3D telomere profile as an assessment of telomere dysfunction and a characterization of genomic instability could predict the disease aggressiveness. An unbalanced chromosomal translocation was found in all metaphases and confirmed by mFISH. The karyotype of the case is: 50∼99,XXX, +der(1;7)(q10;p10),inc[47] The derivative chromosome was found in all 47 analyzed cells, but the number of derivatives varied from one to four. There was neither imbalance in copy number for genes TP53 and PTEN, nor amplification of c-MYC gene. We did not find loss of heterozygosity with analysis of microsatellite markers for chromosomes 1p and 19q in tumor cells. The 3D-telomere profile predicted a very poor prognostic and short-term survival of the patient and highlights the potential clinical power of telomere signatures as a solid biomarker of GBMO. Furthermore, this translocation between chromosomes 1 and 7 led to a singular 1p deletion in this GBMO and may generate the 1p and 7q deletions.
Collapse
Affiliation(s)
- Macoura Gadji
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Manitoba Institute of Cell Biology (MICB), Cancer Care Manitoba (CCMB), The Genomic Centre for Cancer Research and Diagnosis (GCCRD), The University of Manitoba, Winnipeg, Manitoba, Canada; Laboratory of Haematology and Immunology, National Centre of Blood Transfusion of Dakar (CNTS), The Cheikh Anta Diop University of Dakar (UCAD), Dakar Fann, Senegal
| | | | | | | | | | | |
Collapse
|
18
|
Waldeck W, Mueller G, Glatting KH, Hotz-Wagenblatt A, Diessl N, Chotewutmonti S, Langowski J, Semmler W, Wiessler M, Braun K. Spatial localization of genes determined by intranuclear DNA fragmentation with the fusion proteins lamin KRED and histone KRED und visible light. Int J Med Sci 2013; 10:1136-48. [PMID: 23869190 PMCID: PMC3714390 DOI: 10.7150/ijms.6121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
The highly organized DNA architecture inside of the nuclei of cells is accepted in the scientific world. In the human genome about 3 billion nucleotides are organized as chromatin in the cell nucleus. In general, they are involved in gene regulation and transcription by histone modification. Small chromosomes are localized in a central nuclear position whereas the large chromosomes are peripherally positioned. In our experiments we inserted fusion proteins consisting of a component of the nuclear lamina (lamin B1) and also histone H2A, both combined with the light inducible fluorescence protein KillerRed (KRED). After activation, KRED generates reactive oxygen species (ROS) producing toxic effects and may cause cell death. We analyzed the spatial damage distribution in the chromatin after illumination of the cells with visible light. The extent of DNA damage was strongly dependent on its localization inside of nuclei. The ROS activity allowed to gain information about the location of genes and their functions via sequencing and data base analysis of the double strand breaks of the isolated DNA. A connection between the damaged gene sequences and some diseases was found.
Collapse
Affiliation(s)
- Waldemar Waldeck
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Gabriele Mueller
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Karl-Heinz Glatting
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Nicolle Diessl
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Sasithorn Chotewutmonti
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Knecht H, Righolt C, Mai S. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin's Lymphoma. Cancers (Basel) 2013; 5:714-25. [PMID: 24216998 PMCID: PMC3730322 DOI: 10.3390/cancers5020714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/27/2022] Open
Abstract
In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account.
Collapse
Affiliation(s)
- Hans Knecht
- Division d'Hématologie, Département de Médecine, CHUS, Université de Sherbrooke, Québec, J1H 5N4, Canada.
| | | | | |
Collapse
|
20
|
Pathak RU, Mamillapalli A, Rangaraj N, Kumar RP, Vasanthi D, Mishra K, Mishra RK. AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol 2013; 10:564-71. [PMID: 23588056 DOI: 10.4161/rna.24326] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic nucleus is functionally as well as spatially compartmentalized and maintains dynamic organization of sub-nuclear bodies. This organization is supported by a non-chromatin nuclear structure called the nuclear matrix. Although the precise molecular composition and ultra-structure of the nuclear matrix is not known, proteins and RNA molecules are its major components and several nuclear matrix proteins have been identified. However, the nature of its RNA component is unknown. Here we show that in Drosophila melanogaster, transcripts from AAGAG repeats of several hundred nucleotide in length are critical constituents of the nuclear matrix. While both the strands of this repeat are transcribed and are nuclear matrix associated, the polypurine strand is predominantly detected in situ. We also show that AAGAG RNA is essential for viability. Our results reveal the molecular identity of a critical RNA component of the nuclear architecture and point to one of the utilities of the repetitive part of the genome that has accumulated in higher eukaryotes.
Collapse
Affiliation(s)
- Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Mai S. 3D nuclear organization and genomic instability in cancer. BMC Proc 2013; 7 Suppl 2:K17. [PMID: 24764474 PMCID: PMC3624112 DOI: 10.1186/1753-6561-7-s2-k17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sabine Mai
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Righolt C, Mai S. Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes Chromosomes Cancer 2012; 51:975-81. [PMID: 22811041 DOI: 10.1002/gcc.21981] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
Chromothripsis (chromosome shattering) has been described as complex rearrangements affecting single chromosome(s) in one catastrophic event. The chromosomes would be "shattered" and "stitched together" during this event. This phenomenon is proposed to constitute the basis for complex chromosomal rearrangements seen in 2-3% of all cancers and in ∼ 25% of bone cancers. Here we discuss chromothripsis, the use of this term and the evidence presented to support a single catastrophic event that remodels the genome in one step. We discuss why care should be taken in using the term chromothripsis and what evidence is lacking to support its use while describing complex rearrangements.
Collapse
Affiliation(s)
- Christiaan Righolt
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Department of Physiology, the University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
23
|
Gadji M, Adebayo Awe J, Rodrigues P, Kumar R, Houston DS, Klewes L, Dièye TN, Rego EM, Passetto RF, de Oliveira FM, Mai S. Profiling three-dimensional nuclear telomeric architecture of myelodysplastic syndromes and acute myeloid leukemia defines patient subgroups. Clin Cancer Res 2012; 18:3293-304. [PMID: 22539801 DOI: 10.1158/1078-0432.ccr-12-0087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias, with a propensity for evolution into acute myeloid leukemias (AML). This transformation is driven by genomic instability, but mechanisms remain unknown. Telomere dysfunction might generate genomic instability leading to cytopenias and disease progression. EXPERIMENTAL DESIGN We undertook a pilot study of 94 patients with MDS (56 patients) and AML (38 patients). The MDS cohort consisted of refractory cytopenia with multilineage dysplasia (32 cases), refractory anemia (12 cases), refractory anemia with excess of blasts (RAEB)1 (8 cases), RAEB2 (1 case), refractory anemia with ring sideroblasts (2 cases), and MDS with isolated del(5q) (1 case). The AML cohort was composed of AML-M4 (12 cases), AML-M2 (10 cases), AML-M5 (5 cases), AML-M0 (5 cases), AML-M1 (2 cases), AML-M4eo (1 case), and AML with multidysplasia-related changes (1 case). Three-dimensional quantitative FISH of telomeres was carried out on nuclei from bone marrow samples and analyzed using TeloView. RESULTS We defined three-dimensional nuclear telomeric profiles on the basis of telomere numbers, telomeric aggregates, telomere signal intensities, nuclear volumes, and nuclear telomere distribution. Using these parameters, we blindly subdivided the MDS patients into nine subgroups and the AML patients into six subgroups. Each of the parameters showed significant differences between MDS and AML. Combining all parameters revealed significant differences between all subgroups. Three-dimensional telomeric profiles are linked to the evolution of telomere dysfunction, defining a model of progression from MDS to AML. CONCLUSIONS Our results show distinct three-dimensional telomeric profiles specific to patients with MDS and AML that help subgroup patients based on the severity of telomere dysfunction highlighted in the profiles.
Collapse
Affiliation(s)
- Macoura Gadji
- The University of Manitoba, Manitoba Institute of Cell Biology, Cancer Care Manitoba, The Genomic Centre for Cancer Research and Diagnosis, Section of Hematoloy/Oncology, Department of Internal Medicine, The University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|