1
|
Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, Radoi V, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanović‐Talisman T, Vukojević V. Dynamic lateral organization of opioid receptors (kappa, mu wt and mu N40D ) in the plasma membrane at the nanoscale level. Traffic 2018; 19:690-709. [PMID: 29808515 PMCID: PMC6120469 DOI: 10.1111/tra.12582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt ), and its naturally occurring isoform (MOPN40D ) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble-averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside-enriched domains and partial association with cholesterol-enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor-specific. KOP-containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D . Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt , whereas this effect was not observed for MOPN40D .
Collapse
Affiliation(s)
- Maciej K. Rogacki
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Tianyi Li
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Huiying Zhang
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Vlad Radoi
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Yu Ming
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Daniel Ganjali
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Athanasios Sideris
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Alexander R. Small
- Department of Physics and AstronomyCalifornia State Polytechnic UniversityPomonaCalifornia
| | - Lars Terenius
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
- Department of Molecular and Cellular NeurosciencesThe Scripps Research InstituteLa JollaCalifornia
| | | | - Vladana Vukojević
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| |
Collapse
|
2
|
Gunther G, Jameson DM, Aguilar J, Sánchez SA. Scanning fluorescence correlation spectroscopy comes full circle. Methods 2018; 140-141:52-61. [DOI: 10.1016/j.ymeth.2018.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022] Open
|
3
|
Schrimpf W, Barth A, Hendrix J, Lamb DC. PAM: A Framework for Integrated Analysis of Imaging, Single-Molecule, and Ensemble Fluorescence Data. Biophys J 2018; 114:1518-1528. [PMID: 29642023 PMCID: PMC5954487 DOI: 10.1016/j.bpj.2018.02.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 11/24/2022] Open
Abstract
Fluorescence microscopy and spectroscopy data hold a wealth of information on the investigated molecules, structures, or organisms. Nowadays, the same fluorescence data set can be analyzed in many ways to extract different properties of the measured sample. Yet, doing so remains slow and cumbersome, often requiring incompatible software packages. Here, we present PAM (pulsed interleaved excitation analysis with MATLAB), an open-source software package written in MATLAB that offers a simple and efficient workflow through its graphical user interface. PAM is a framework for integrated and robust analysis of fluorescence ensemble, single-molecule, and imaging data. Although it was originally developed for the analysis of pulsed interleaved excitation experiments, PAM has since been extended to support most types of data collection modalities. It combines a multitude of powerful analysis algorithms, ranging from time- and space-correlation analysis, over single-molecule burst analysis, to lifetime imaging microscopy, while offering intrinsic support for multicolor experiments. We illustrate the key concepts and workflow of the software by discussing data handling and sorting and provide step-by-step descriptions for the individual usage cases.
Collapse
Affiliation(s)
- Waldemar Schrimpf
- Department of Physical Chemistry, Center for Integrated Protein Science Munich (CIPSM), Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Anders Barth
- Department of Physical Chemistry, Center for Integrated Protein Science Munich (CIPSM), Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Biomedical Research Institute (BIOMED), Advanced Optical Microscopy Centre, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, KU Leuven, Heverlee, Belgium
| | - Don C Lamb
- Department of Physical Chemistry, Center for Integrated Protein Science Munich (CIPSM), Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
4
|
Briddon SJ, Kilpatrick LE, Hill SJ. Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends Pharmacol Sci 2017; 39:158-174. [PMID: 29277246 DOI: 10.1016/j.tips.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are organised within the cell membrane into highly ordered macromolecular complexes along with other receptors and signalling proteins. Understanding how heterogeneity in these complexes affects the pharmacology and functional response of these receptors is crucial for developing new and more selective ligands. Fluorescence correlation spectroscopy (FCS) and related techniques such as photon counting histogram (PCH) analysis and image-based FCS can be used to interrogate the properties of GPCRs in these membrane microdomains, as well as their interaction with fluorescent ligands. FCS analyses fluorescence fluctuations within a small-defined excitation volume to yield information about their movement, concentration and molecular brightness (aggregation). These techniques can be used on live cells with single-molecule sensitivity and high spatial resolution. Once the preserve of specialist equipment, FCS techniques can now be applied using standard confocal microscopes. This review describes how FCS and related techniques have revealed novel insights into GPCR biology.
Collapse
Affiliation(s)
- Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
5
|
Elson EL. Introduction to fluorescence correlation Spectroscopy-Brief and simple. Methods 2017; 140-141:3-9. [PMID: 29155128 DOI: 10.1016/j.ymeth.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Su D, Hu X, Dong C, Ren J. Determination of Caspase-3 Activity and Its Inhibition Constant by Combination of Fluorescence Correlation Spectroscopy with a Microwell Chip. Anal Chem 2017; 89:9788-9796. [DOI: 10.1021/acs.analchem.7b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Di Su
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaocai Hu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Li J, Barylko B, Eichorst JP, Mueller JD, Albanesi JP, Chen Y. Association of Endophilin B1 with Cytoplasmic Vesicles. Biophys J 2017; 111:565-576. [PMID: 27508440 DOI: 10.1016/j.bpj.2016.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Physics, University of Minnesota, Minneapolis, Minnesota
| | | | - John P Eichorst
- Department of Physics, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Yan Chen
- Department of Physics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
8
|
Angiolini JF, Stortz M, Steinberg PY, Mocskos E, Bruno L, Soler-Illia G, Angelomé PC, Wolosiuk A, Levi V. Diffusion of single dye molecules in hydrated TiO2 mesoporous films. Phys Chem Chem Phys 2017; 19:26540-26544. [DOI: 10.1039/c7cp05186g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) shows how the pore dimensions of thin and hydrated TiO2 mesoporous calcined films modulate the diffusion of molecules across the pore network.
Collapse
Affiliation(s)
- Juan F. Angiolini
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Biológica
- Argentina-CONICET – Universidad de Buenos Aires
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Martín Stortz
- CONICET – Universidad de Buenos Aires
- Instituto de Fisiología
- Biología Molecular y Neurociencias (IFIBYNE)
- Buenos Aires
- Argentina
| | - Paula Y. Steinberg
- Gerencia Química – Centro Atómico Constituyentes – Comisión Nacional de Energía Atómica
- CONICET
- San Martín
- Argentina
| | - Esteban Mocskos
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Computación
- Buenos Aires, Argentina-CONICET
- Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC)
| | - Luciana Bruno
- CONICET – Universidad de Buenos Aires
- Instituto de Física de Buenos Aires (IFIBA)
- Buenos Aires
- Argentina
| | - Galo Soler-Illia
- Instituto de Nanosistemas
- UNSAM, 25 de Mayo y Francia (1650)
- San Martín
- Argentina
| | - Paula C. Angelomé
- Gerencia Química – Centro Atómico Constituyentes – Comisión Nacional de Energía Atómica
- CONICET
- San Martín
- Argentina
| | - Alejandro Wolosiuk
- Gerencia Química – Centro Atómico Constituyentes – Comisión Nacional de Energía Atómica
- CONICET
- San Martín
- Argentina
- Departamento de Química Inorgánica
| | - Valeria Levi
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Biológica
- Argentina-CONICET – Universidad de Buenos Aires
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| |
Collapse
|
9
|
González Bardeci N, Angiolini JF, De Rossi MC, Bruno L, Levi V. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. IUBMB Life 2016; 69:8-15. [PMID: 27896901 DOI: 10.1002/iub.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/07/2016] [Indexed: 11/12/2022]
Abstract
Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | - Juan Francisco Angiolini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | - María Cecilia De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | | | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| |
Collapse
|
10
|
Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments. Biophys J 2016; 108:2613-8. [PMID: 26039162 DOI: 10.1016/j.bpj.2015.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments.
Collapse
|
11
|
Li J, Chen Y, Li M, Carpenter MA, McDougle RM, Luengas EM, Macdonald PJ, Harris RS, Mueller JD. APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. J Mol Biol 2014; 426:1296-307. [PMID: 24361275 PMCID: PMC3977201 DOI: 10.1016/j.jmb.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022]
Abstract
APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example, although highly active, is not packaged and is therefore not restrictive. APOBEC3G, on the other hand, although having weaker enzymatic activity, is packaged into virions and is strongly restrictive. Although a number of studies have described the propensity for APOBEC3 oligomerization, its relevance to HIV-1 restriction remains unclear. Here, we address this problem by examining APOBEC3 oligomerization in living cells using molecular brightness analysis. We find that APOBEC3G forms high-order multimers as a function of protein concentration. In contrast, APOBEC3A, APOBEC3C and APOBEC2 are monomers at all tested concentrations. Among other members of the APOBEC3 family, we show that the multimerization propensities of APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3H (haplotype II) bear more resemblance to APOBEC3G than to APOBEC3A/3C/2. Prior studies have shown that all of these multimerizing APOBEC3 proteins, but not the monomeric family members, have the capacity to package into HIV-1 particles and restrict viral infectivity. This correlation between oligomerization and restriction is further evidenced by two different APOBEC3G mutants, which are each compromised for multimerization, packaging and HIV-1 restriction. Overall, our results imply that multimerization of APOBEC3 proteins may be related to the packaging mechanism and ultimately to virus restriction.
Collapse
Affiliation(s)
- Jinhui Li
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ming Li
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Rebecca M McDougle
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Elizabeth M Luengas
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Patrick J Macdonald
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Liu H, Dong C, Ren J. Tempo-Spatially Resolved Scattering Correlation Spectroscopy under Dark-Field Illumination and Its Application to Investigate Dynamic Behaviors of Gold Nanoparticles in Live Cells. J Am Chem Soc 2014; 136:2775-85. [DOI: 10.1021/ja410284j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Heng Liu
- College of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China
| | - Chaoqing Dong
- College of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
13
|
Fluorescence correlation spectroscopy and photon-counting histogram analysis of receptor-receptor interactions. Methods Cell Biol 2013; 117:181-96. [PMID: 24143978 DOI: 10.1016/b978-0-12-408143-7.00010-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) performed using a laser scanning confocal microscope is a technique with single-molecule sensitivity that is becoming more accessible to cell biologists. In this chapter, we describe the use of FCS for the analysis of diffusion coefficients and receptor-receptor interactions in live cells in culture. In particular, we describe a protocol to collect fluorescence fluctuation data from fluorescence-tagged receptors as they diffuse into an out of a small laser-illuminated observation volume using a commercially available system such as the Zeiss ConfoCor 3 or LSM-780 microscope. Autocorrelation analysis of the fluctuations in fluorescence intensity provides information about the diffusion time and number of fluorescent molecules in the observation volume. A photon-counting histogram can be used to examine the relationship between fluorescence intensity and the number of fluorescent molecules to estimate the average molecular brightness of the sample. Since molecular brightness is directly proportional to the number of fluorescent molecules, it can be used to monitor receptor-receptor interactions and to decode the number of receptor monomers present in an oligomeric complex.
Collapse
|