1
|
Saha M, Mandal S, Sarkar S, Biswas A, Ghati A, Cordes DB, Slawin AMZ, Saha NC. Anticancer, antimicrobial and photocatalytic activities of a new pyrazole containing thiosemicarbazone ligand and its Co(III) and Ni(II) complexes: Synthesis, spectroscopic characterization and X-ray crystallography. J Inorg Biochem 2024; 257:112577. [PMID: 38714060 DOI: 10.1016/j.jinorgbio.2024.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
A new pyrazole based thiosemicarbazone ligand, 5-methyl-3-formylpyrazole-N(4)-isopropylthiosemicarbazone, (HMPzNHPri) (compound I), and its cobalt(III) and nickel(II) complexes, [Co(MPzNHPri)2]Cl (compound II) and [Ni(HMPzNHPri)2]Br2 (compound III), respectively, have been synthesized and characterized through various physico-chemical and spectroscopic studies. Both the reported Co(III) and Ni(II) complexes are cationic in nature and behave as 1:1 and 1:2 electrolytes in MeOH, respectively. Electronic spectral features of the complexes have classified them as distorted octahedral ones. IR spectral data (4000-450 cm-1) have suggested a monoprotic tridentate (NNS) function of compound I coordinating to the Co(III) ion via the pyrazolyl (tertiary) ring nitrogen, azomethine nitrogen and thiolato sulphur atom; while for compound III, compound I has been found to act as neutral NNS tridentate one, coordinating to Ni(II) via the pyrazolyl iminic nitrogen, azomethine nitrogen and thioketo sulphur. Structural features of all the compounds are confirmed by the single crystal X-ray data. All the compounds reported here have been found to exhibit significant photocatalytic activity towards degradation of Methylene Blue (MB) under UV radiation. Anticancer activity of all the three compounds against cancer cell lines (HeLa and A549) and a normal cell line (HEK293) have been investigated. Compound II has been found to be more efficient against the human cervical cancer cell (HeLa) and the lung cancer cell (A549) than compounds I and III. The ligand and both the complexes display potential activities against both gram-positive (Bacillus subtilis MTCC 7193) and gram-negative bacteria (E. coli MTCC 1610).
Collapse
Affiliation(s)
- Manan Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India; Government General Degree College, Chapra, Sikra, Padmamala, 741123 Nadia, West Bengal, India
| | - Suman Mandal
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Solanki Sarkar
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Arunima Biswas
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Amit Ghati
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, 700120, West Bengal, India
| | - David B Cordes
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Nitis Chandra Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India.
| |
Collapse
|
2
|
Pan A, Bhaduri R, Mandal S, Kumar Tarai S, Bagchi A, Biswas A, Moi SC. Photophysical study on DNA & BSA binding and cytotoxic behaviour of piperidine-Pt(II) complexes: their kinetics & mechanism and molecular docking. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Usmani J, Kausar H, Akbar S, Sartaj A, Mir SR, Hassan MJ, Sharma M, Ahmad R, Rashid S, Ansari MN. Molecular Docking of Bacterial Protein Modulators and Pharmacotherapeutics of Carica papaya Leaves as a Promising Therapy for Sepsis: Synchronising In Silico and In Vitro Studies. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020574. [PMID: 36677632 PMCID: PMC9862608 DOI: 10.3390/molecules28020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host's body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was to determine the potential role of Carica papaya leaf extract for sepsis treatment in silico and in vitro. We selected two phytochemical compounds, carpaine and quercetin, and docked them with bacterial proteins, heat shock protein (PDB ID: 4PO2), surfactant protein D (PDB ID: 1PW9), and lactobacillus bacterial protein (PDB ID: 4MKS) against imipenem and cyclophosphamide. Quercetin showed the strongest interaction with 1PW9 and 4MKS proteins. The leaves were extracted using ethanol, methanol, and water through Soxhlet extraction. Total flavonoid content, DPPH assay, HPTLC, and FTIR were performed. In vitro cytotoxicity of ethanol extract was screened via MTT assay on the J774 cell line. Ethanol extract (EE) possessed the maximum number of phytocomponents, the highest amount of flavonoid content, and the maximum antioxidant activity compared to other extracts. FTIR analysis confirmed the presence of N-H, O-H, C-H, C=O, C=C, and C-Cl functional groups in ethanol extract. Cell viability was highest (100%) at 25 µg/mL of EE. The present study demonstrated that the papaya leaves possessed antibacterial and cytotoxic activity against sepsis infection.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Hina Kausar
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Showkat R. Mir
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Mohammed Jaseem Hassan
- Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi 110062, India
- Correspondence: (R.A.); (M.N.A.)
| | - Summaya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (R.A.); (M.N.A.)
| |
Collapse
|
4
|
Mukherjee P, Bagchi A, Banerjee A, Roy H, Bhattacharya A, Biswas A, Chatterji U. PDE4 inhibitor eliminates breast cancer stem cells via noncanonical activation of mTOR. J Cell Biochem 2022; 123:1980-1996. [PMID: 36063486 DOI: 10.1002/jcb.30325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Ineffective cancer treatment is implicated in metastasis, recurrence, resistance to chemotherapy and radiotherapy, and evasion of immune surveillance. All these failures occur due to the persistence of cancer stem cells (CSCs) even after rigorous therapy, thereby rendering them as essential targets for cancer management. Contrary to the quiescent nature of CSCs, a gene profiler array disclosed that phosphatidylinositol-3-kinase (PI3K), which is known to be crucial for cell proliferation, differentiation, and survival, was significantly upregulated in CSCs. Since PI3K is modulated by cyclic adenosine 3',5' monophosphate (cAMP), analyses of cAMP regulation revealed that breast CSCs expressed increased levels of phosphodiesterase 4 (PDE4) in contrast to normal stem cells. In accordance, the effects of rolipram, a PDE4 inhibitor, were evaluated on PI3K regulators and signaling. The efficacy of rolipram was compared with paclitaxel, an anticancer drug that is ineffective in obliterating breast CSCs. Analyses of downstream signaling components revealed a switch between cell survival and death, in response to rolipram, specifically of the CSCs. Rolipram-mediated downregulation of PDE4A levels in breast CSCs led to an increase in cAMP levels and protein kinase A (PKA) expression. Subsequently, PKA-mediated upregulation of phosphatase and tensin homolog antagonized the PI3K/AKT/mTOR pathway and led to cell cycle arrest. Interestingly, direct yet noncanonical activation of mTOR by PKA, circumventing the influence of PI3K and AKT, temporally shifted the fate of CSCs toward apoptosis. Rolipram in combination with paclitaxel indicated synergistic consequences, which effectively obliterated CSCs within a tumor, thereby suggesting combinatorial therapy as a sustainable and effective strategy to abrogate breast CSCs for better patient prognosis.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arka Bagchi
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Himansu Roy
- Department of Surgery, Calcutta Medical College, Kolkata, India
| | | | - Arunima Biswas
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.,Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
7
|
Bhaduri R, Mandal S, Kumar Tarai S, Pan A, Mukherjee S, Bagchi A, Biswas A, Ch. Moi S. Cytotoxic activity of nitrogen, sulfur, and oxygen chelated Pt(II) complexes; their DNA/BSA binding by in vitro and in silico approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wong HX, Lee CC, Ho PCL. Comparison of three in vitro keratinocytes-fibroblasts wound healing models commonly used in pharmaceutical research. J Pharm Pharmacol 2022; 74:1220-1229. [PMID: 35789390 DOI: 10.1093/jpp/rgac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Several common wound healing models have been used to evaluate wound healing agents and formulations, namely: conditioned media (CM), transwell co-cultures (TWCC) and co-cultures (CC) in a monolayer. However, no study has been conducted to compare the relevance of these models in the keratinocytes and fibroblasts interaction physiologically. Therefore, this study aimed to compare these models based on cell migration and proliferation, and matrix metalloproteinase (MMP) expression. METHODS Cell migration was analysed by scratch assay and MMP-7, while cell proliferation was analysed by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. KEY FINDINGS Increased cell migration was observed in CM and TWCC models, while varied results were obtained in CC. Cell migration was increased due to upregulation of MMP-7 in CM and TWCC models, while it was downregulated in CC, which might have hindered migration of both cells in monolayers. CONCLUSIONS CM and TWCC are more suitable than CC for wound healing research and for evaluating wound healing agents or formulations, as they can better simulate the layered tissue constructs and paracrine interactions in the physiological environment.
Collapse
Affiliation(s)
- Hui Xin Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Rabiee N, Ahmadi S, Soufi GJ, Hekmatnia A, Khatami M, Fatahi Y, Iravani S, Varma RS. Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2022; 97:1640-1654. [PMID: 35463806 PMCID: PMC9015521 DOI: 10.1002/jctb.7036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/02/2023]
Abstract
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyAustralia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Ali Hekmatnia
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mehrdad Khatami
- Non‐communicable Diseases Research CenterBam University of Medical SciencesBamIran
- Department of Medical Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacký University in OlomoucOlomoucCzech Republic
| |
Collapse
|
10
|
Photoinduced Antibacterial Activity and Cytotoxicity of CdS Stabilized on Mesoporous Aluminosilicates and Silicates. Pharmaceutics 2022; 14:pharmaceutics14071309. [PMID: 35890205 PMCID: PMC9317289 DOI: 10.3390/pharmaceutics14071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Inactivation of bacteria under the influence of visible light in presence of nanostructured materials is an alternative approach to overcome the serious problem of the growing resistance of pathogenic bacteria to antibiotics. Cadmium sulfide quantum dots are superefficient photocatalytic material suitable for visible light transformation. In this work, CdS nanoparticles with size of less than 10 nm (QDs) were synthesized on the surface of natural and synthetic mesoporous aluminosilicates and silicates (halloysite nanotubes, MCM-41, MCM-41/Halloysite, SBA-15). Materials containing 5–7 wt.% of CdS were characterized and tested as agents for photocatalytic bacteria degradation of Gram-positive S. aureus and Gram-negative E. coli with multiple antibiotic resistance. Eukaryotic cell viability tests were also conducted on the model cancer cells A 459. We found that the carrier affects prokaryotic and eukaryotic toxicity of CdS quantum dots. CdS/MCM-41/HNTs were assumed to be less toxic to eukaryotic cells and possess the most prominent photocatalytic antibacterial efficiency. Under visible light irradiation, it induced 100% bacterial growth inhibition at the concentration of 125 μg/mL and the bacteriostatic effect at the concentration of 63 μg/mL. CdS/MCM-41/HNTs showed 100% E. coli growth inhibition in the concentration of 1000 μg/mL under visible light irradiation.
Collapse
|
11
|
Menon I, Kang SM, D'Souza M. Nanoparticle formulation of the fusion protein virus like particles of respiratory syncytial virus stimulates enhanced in vitro antigen presentation and autophagy. Int J Pharm 2022; 623:121919. [PMID: 35714815 DOI: 10.1016/j.ijpharm.2022.121919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 01/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in childrenunder one year globally. As a result, RSV poses a severe burden on healthcare services. Thus, a vaccine for RSV is a global need. Utilizing polymeric nanoparticles as a delivery system for vaccine antigen holds a lot of promise. In this study, the virus like particles of RSV fusion protein (F-VLP) was encapsulated in poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NP). The F-VLP NP was formulated using a double emulsion solvent evaporation technique. The optimized NPs had a particle size of 525 ± 10.5 nm and an antigen encapsulation efficiency of 73% ± 10.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the F-VLP was stable post formulation. The F-VLP NP showed a sustained release of the F-VLP antigen for up to a week. In vitro study revealed that the F-VLP NP were non-cytotoxic, and the cellular uptake of the NPs by dendritic cells was observed within 3 h. The F-VLP NP with adjuvant monophosphoryl lipid A (MPL) NP and without MPL NP showed enhanced expression of antigen presentation molecule major histocompatibility complex (MHC)-I and autophagosomes in dendritic cells. In summary, the sustained release of the antigen from the F-VLP NP and the particulate nature of the vaccine resulted in enhanced antigen presentation and induction of autophagy in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| |
Collapse
|
12
|
Wong CY, Ong HX, Traini D. The application of in vitro cellular assays for analysis of electronic cigarettes impact on the airway. Life Sci 2022; 298:120487. [DOI: 10.1016/j.lfs.2022.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
13
|
Dong H, Gao Y, Huang X, Wu X. Synthesis of sialic acid conjugates of the clinical near-infrared dye as next-generation theranostics for cancer phototherapy. J Mater Chem B 2022; 10:927-934. [PMID: 35060591 PMCID: PMC9112073 DOI: 10.1039/d1tb02693c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is a multifaceted global health problem that requires continuous action to develop next-generation cancer theranostics. Inspired by the emerging use of indocyanine green (ICG), the only clinically approved near-infrared (NIR) dye for cancer phototherapy, here we synthesized two ICG conjugate theranostics by coupling ICG to sialic acid (Sia) through the C2 and C9 positions of Sia, respectively, referred to as Sia-C2-ICG and Sia-C9-ICG. Encouragingly, Sia-C2/C9-ICGs show superior in vitro properties, including enhanced stability, reduced non-specific binding to serum proteins, and improved blood compatibility, highlighting the benefits of Sia coupling. Notably, in vivo NIR imaging shows that Sia-C9-ICG significantly promotes tumor targeting and effectively prolongs the circulation time in the body, while Sia-C2-ICG is superior to ICG but inferior to Sia-C9-ICG in targeting tumors. Furthermore, Sia-C9-ICG combined with NIR laser irradiation can lead to excellent photothermal and photodynamic therapies for cancer cells, resulting in superior solid tumor ablation. To our knowledge, this is the first report of Sia-NIR conjugates achieving significant tumor reduction in vivo. Together, these advances render Sia-C9-ICG an attractive lead as next-generation cancer theranostics that can be translated clinically to treat human patients.
Collapse
Affiliation(s)
- Huiling Dong
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
| | - Yanan Gao
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res 2022; 12:27-48. [PMID: 33486689 DOI: 10.1007/s13346-021-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/03/2023]
Abstract
Even though the dawn of highly active antiretroviral therapy (HAART) proved out to be a boon for acquired immunodeficiency syndrome (AIDS) patients, management of HIV infections persists to be a major global health curse. A reduced efficacy with existing conventional therapy for brain targeting has been largely credited to the inability of antiretroviral (ARV) drugs to transmigrate across the blood-brain barrier (BBB) in productive concentrations. The review consists of nano-based drug delivery strategies rendering superior outcomes to delivery of ARV drugs to the viral sanctuaries in the brain. Nano-ART for ARV drugs promotes the development of an optimized dosage regimen, thereby improving the penetration of drugs across the BBB in an attempt to target the central reservoirs hosting viral population. Numerous efforts have been undertaken for making the drug more bioavailable and therapeutically effective by moulding them into various nanostructures. Polymeric nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanodiamonds, vesicle-based drug carriers, metal-based nanoparticles, and nano vaccines have been reported for their advancing role as a smart alternative for drug delivery to central nervous system. The high drug loading capacity of nanocarriers and their small size effectuating increased surface to volume ratio is accountable for improved efficacy of ARV drugs when formulated as nanotherapeutics. This review highlights the advancing role of nanotherapeutics in mediating a successful delivery of ARV drugs to eradicate viral loads in treating NeuroAIDS.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sachin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
15
|
Mishra N, Rana K, Seelam SD, Kumar R, Pandey V, Salimath BP, Agsar D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front Bioeng Biotechnol 2021; 9:761266. [PMID: 34950641 PMCID: PMC8691732 DOI: 10.3389/fbioe.2021.761266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
A biosurfactant producing bacterium was identified as Pseudomonas aeruginosa DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8. The radical scavenging activity of rhamnolipid (DNM50RL) was determined by 2, 3-diphenyl-1-picrylhydrazyl (DPPH) assay which showed an IC50 value of 101.8 μg/ ml. The cytotoxic activity was investigated against MDA-MB-231 breast cancer cell line by MTT (4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide) assay which showed a very low IC50 of 0.05 μg/ ml at 72 h of treatment. Further, its activity was confirmed by resazurin and trypan blue assay with IC50 values of 0.01 μg/ml and 0.64 μg/ ml at 72 h of treatment, respectively. Thus, the DNM50RL would play a vital role in the treatment of breast cancer targeting inhibition of p38MAPK.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Microbiology, Gulbarga University, Gulbarga, India
| | - Kavita Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | | | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kadaganchi, India
| | - Vijyendra Pandey
- Department of Psychology, School of Social and Behavioural Sciences, Central University of Karnataka, Kadaganchi, India
| | - Bharathi P Salimath
- Department of Biotechnology, University of Mysore, Mysore, India.,Sanorva Biotech Pvt. Ltd., Mysuru, India
| | - Dayanand Agsar
- Department of Microbiology, Gulbarga University, Gulbarga, India
| |
Collapse
|
16
|
Phytochemical Profile, Antioxidant Activity, and Cytotoxicity Assessment of Tagetes erecta L. Flowers. Molecules 2021; 26:molecules26051201. [PMID: 33668106 PMCID: PMC7956293 DOI: 10.3390/molecules26051201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Tagetes erecta L. is a popular ornamental plant of the Asteraceae family, which is widely cultivated not only for its decorative use, but also for the extraction of lutein. Besides carotenoid representatives, which have been extensively studied, other important classes of secondary metabolites present in the plant, such as polyphenols, could exhibit important biological activities. The phytochemical analysis of a methanolic extract obtained from T. erecta inflorescences was achieved using liquid chromatography–mass spectrometry (LC-MS) techniques. The extract was further subjected to a multistep purification process, which allowed the separation of different fractions. The total extract and its fractions contain several polyphenolic compounds, such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonols (especially quercetagetin glycosides), and several aglycons (e.g., quercetin, patuletin). One of the fractions, containing mostly quercetagitrin, was subjected to two different antioxidant assays (metal chelating activity and lipoxygenase inhibition) and to in vitro cytotoxicity assessment. Generally, the biological assays showed promising results for the investigated fraction compared to the initial extract. Given the encouraging outcome of the in vitro assays, further purification and structural analysis of compounds from T. erecta extracts, as well as further in vivo investigations are justified.
Collapse
|
17
|
Alkış ME, Keleştemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and ruthenium complexes with pyrimidine based schiff base: Synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
|
19
|
Barut B, Yalçın CÖ, Demirbaş Ü. The water soluble Zn(II) and Mg(II) phthalocyanines: Synthesis, photochemical, DNA photodamage and PDT effects against A549 cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Alkış ME, Buldurun K, Turan N, Alan Y, Yılmaz ÜK, Mantarcı A. Synthesis, characterization, antiproliferative of pyrimidine based ligand and its Ni(II) and Pd(II) complexes and effectiveness of electroporation. J Biomol Struct Dyn 2020; 40:4073-4083. [PMID: 33251985 DOI: 10.1080/07391102.2020.1852965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the study, a new Schiff base (ligand) was obtained using 4-aminopyrimidine-2(1H)-one, the starting material, and 2,3,4-trimethoxy benzaldehyde. Ni(II) and Pd(II) complexes were obtained from the reaction of the ligand and NiCl2·6H2O, PdCl2(CH3CN)2 (1:1 ratio). These compounds were characterized using the elemental and mass analysis, 1H, 13C-NMR, FT-IR, UV-Vis, magnetic susceptibility, thermal analysis, and the X-ray diffraction analyses. The antiproliferative activities of the synthesized ligand, Ni(II) and Pd(II) complexes were identified on the HepG2 (human liver cancer cells) cell line and their biocompatibility was tested on the L-929 (fibroblast cells) cell line by the MTT analysis method. Furthermore, the effects of electroporation (EP) on the cytotoxic activities of synthesized compounds were investigated in HepG2 cancer cells. According to the MTT findings of the study, the ligand did not exhibit an antiproliferative activity while its Ni(II) and Pd(II) complexes exhibited an antiproliferative activity. Moreover, it was observed that the antiproliferative activity of the Pd(II) complex was stronger than that of the Ni(II) complex. The combined application of EP + compounds is much more effective than the usage of the compounds alone in the treatment of HepG2 cancer cells. The EP increased the cytotoxicity of the Ni(II) and Pd(II) complexes by 1.66, and 2.54 times, respectively. It was concluded that Ni(II) and Pd(II) complexes may contribute as potential anti-cancer agents for the treatment of hepatocellular carcinoma and yield promising results in the case of being used in ECT.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Sciences Vocational School, Muş Alparslan University, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Yusuf Alan
- Department of Primary Education, Education Faculty, Muş Alparslan University, Muş, Turkey
| | - Ünzile Keleştemur Yılmaz
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
21
|
González-Larraza PG, López-Goerne TM, Padilla-Godínez FJ, González-López MA, Hamdan-Partida A, Gómez E. IC 50 Evaluation of Platinum Nanocatalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines. ACS OMEGA 2020; 5:25381-25389. [PMID: 33043218 PMCID: PMC7542800 DOI: 10.1021/acsomega.0c03759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 05/27/2023]
Abstract
Cancer is a major public health problem being one of the main causes of morbidity and mortality today. Recent advances in catalytic nanomedicine have offered new cancer therapies based on the administration of nanoparticles (NPs) of platinum (Pt) dispersed in catalytic mesoporous nanomaterials (titania, TiO2) with highly selective cytotoxic properties and no adverse effects. A half maximal inhibitory concentration (IC50) study was carried out in cancerous cell lines (HeLa, DU-145, and fibroblasts) to evaluate the cytotoxic effect of different nanomaterials [Pt/TiO2, TiO2, and Pt(acac)2] synthesized by the sol-gel method at concentrations 0-1000 μg/mL. The assays showed that IC50 values for Pt in functionalized TiO2 (NPt) in HeLa (53.74 ± 2.95 μg/mL) and DU-145 (75.07 ± 5.48 μg/mL) were lower than those of pure TiO2 (74.29 ± 8.95 and 82.02 ± 6.03 μg/mL, respectively). Pt(acac)2 exhibited no cytotoxicity. Normal cells (fibroblasts) treated with NPt exhibited no significant growth inhibition, suggesting the high selectivity of the compound for cancerous cells only. TiO2 and NPt were identified as antineoplastic compounds in vitro. Pt(acac)2 is not recommendable because of the low cytotoxicity observed.
Collapse
Affiliation(s)
- Pamela G. González-Larraza
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Tessy M. López-Goerne
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Francisco J. Padilla-Godínez
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, San Pedro Tlaquepaque, Jalisco 45604, Mexico
| | - Marco A. González-López
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Aida Hamdan-Partida
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Esteban Gómez
- AG Nanooptik, Humboldt-Universtät zu Berlin, Berlin 10117, Germany
| |
Collapse
|
22
|
Lin M, Zhou S, Sakamoto K. Alpha Mangostin promotes myogenic differentiation of C2C12 mouse myoblast cells. Biochem Biophys Res Commun 2020; 528:193-198. [PMID: 32475640 DOI: 10.1016/j.bbrc.2020.04.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023]
Abstract
Mangosteen, a fruit mainly produced in Southeast Asia, has been used as food and as an antipyretic and for treating skin diseases. The xanthones contained in mangosteen have many physiological activities including melanin suppression and anticancer activities, but little is known about the physiological effects of the most abundant xanthone, α-mangostin (α-MG) on myoblasts. In this study, we applied α-MG to C2C12 cells that had been induced to differentiate using 2% HS, and analyzed the physiological action of α-MS and the underlying mechanism in the context of myogenic differentiation. α-MG increased the survival rate of C2C12 cells in a concentration-dependent manner. Analysis of the morphological changes in the cells showed that α-MG significantly enhanced the myogenic differentiation of C2C12 myoblasts, whereas the mitochondrial number was only slightly affected. Expression analysis of differentiation-related proteins in C2C12 cells revealed that α-MG promoted the expression of MyoD and Myogenin. Thus, the present study revealed that α-MG improves the survival and myogenic differentiation of C2C12 myoblasts.
Collapse
Affiliation(s)
- Minhui Lin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Siqi Zhou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
23
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
24
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
25
|
Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2018; 558:29-42. [PMID: 30599229 DOI: 10.1016/j.ijpharm.2018.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a paradigm shift in the focus of healthcare towards development of customized therapies which cater to the unmet needs in a myriad of disease areas such as cancer, infections, cardiovascular diseases, neurodegenerative disorders and inflammatory disorders. The term 'theranostic' refers to such multifunctional systems which combine the features of diagnosis and treatment in a single platform for superior control of the disease. Theranostic systems enable detection of disease, treatment and real time monitoring of the diseased tissue. Theranostic nanocarriers endowed with multiple features of imaging, targeting, and providing on-demand delivery of therapeutic agents have been designed for enhancement of therapeutic outcomes. Fabrication of theranostics involves utilization of materials having distinct properties for imaging, targeting, and programming drug release spatially and temporally. Although the field of theranostics has been widely researched and explored so far for treatment of different types of cancer, there have been considerable efforts in the past few years to extend its scope to other areas such as infections, neurodegenerative disorders and cardiovascular diseases. This review showcases the potential applications of theranostics in disease areas other than cancer. It also highlights the cardinal issues which need to be addressed for successful clinical translation of these theranostic tools.
Collapse
Affiliation(s)
- Yashna Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Priyanka Prabhu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
26
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
27
|
Nabi B, Rehman S, Khan S, Baboota S, Ali J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res Bull 2018; 142:384-393. [DOI: 10.1016/j.brainresbull.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
28
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
29
|
Cheruiyot C, Pataki Z, Ramratnam B, Li M. Proteomic Analysis of Exosomes and Its Application in HIV-1 Infection. Proteomics Clin Appl 2018; 12:e1700142. [PMID: 29687643 DOI: 10.1002/prca.201700142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are 30-100 nm extracellular vesicles secreted from late endosomes by various types of cells. Numerous studies have suggested that exosomes play significant roles in human immunodeficiency virus 1 (HIV-1) biogenesis. Proteomics coupled with exosome fractionation has been successfully used to identify various exosomal proteins and helped to uncover the interactions between exosomes and HIV-1. To inform the current progress in the intersection of exosome, proteomics, and HIV-1, this review is focused on: i) analyzing different exosome isolation, purification methods, and their implications in HIV-1 studies; ii) evaluating the roles of various proteomic techniques in defining exosomal contents; iii) discussing the research and clinical applications of proteomics and exosome in HIV-1 biology.
Collapse
Affiliation(s)
- Collins Cheruiyot
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Zemplen Pataki
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Bharat Ramratnam
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA.,Centers of Biomedical Research Excellence, Center for Cancer Research, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.,Clinical Research Center of Lifespan, Providence, RI, 02903, USA
| | - Ming Li
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| |
Collapse
|
30
|
Varghese NM, Senthil V, Saxena SK. Nanocarriers for brain specific delivery of anti-retro viral drugs: challenges and achievements. J Drug Target 2017; 26:195-207. [PMID: 28866957 DOI: 10.1080/1061186x.2017.1374389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HIV/AIDS is a global pandemic and the deleterious effects of human immunodeficiency virus in the brain cannot be overlooked. Though the current anti-retro viral therapy is able to reduce the virus load in the peripheral tissues of the body, the inability of the anti-retro viral drugs to cross the blood brain barrier, as such, limits its therapeutic effect in the brain. The development of newer, successful nanoparticulate drug delivery systems to enhance the feasibility of the anti-retro viral drugs to the brain, offers a novel strategy to treat the AIDS-related neuronal degradation. This review summarised the neuropathogenesis of neuroAIDS, the challenges and achievements made in the delivery of therapeutics across the BBB and the use of nanocarriers as a safe and effective way for delivering anti-retro viral drugs to the brain.
Collapse
Affiliation(s)
- Nila Mary Varghese
- a Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Venkatachalam Senthil
- a Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Shailendra K Saxena
- b Centre for Advance Research (CFAR) , King George's Medical University (KGMU) , Lucknow , India
| |
Collapse
|
31
|
Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles. Acta Biomater 2017; 58:205-213. [PMID: 28583903 DOI: 10.1016/j.actbio.2017.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/23/2022]
Abstract
Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. STATEMENT OF SIGNIFICANCE Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in cells and tissues. In this study we designed a cytokine (interleukin-13) functionalized quantum dot to detect a cancer associated receptor expressed in cancer stem cells and the extracellular vesicles (exosomes) secreted by the cancer cells themselves. The binding pattern of these cytokine modified quantum dots to the cancer stem cells and exosomes alters the physical properties of the complex in the fixed and suspended form. This altered binding pattern can be monitored by a variety of techniques, including transmission electron microscopy, atomic force microscopy and flow cytometry, and subsequent characterization of this quantum dot binding profile provides useful data that can be utilized as a fingerprint to detect cancer disease progression. This type of functionalized quantum dot fingerprint is especially useful for invasive cancers including brain and other metastatic cancers and may allow for earlier detection of disease progression or recurrence, thus saving the lives of patients suffering from this devastating disease.
Collapse
|
32
|
Getz T, Qin J, Medintz IL, Delehanty JB, Susumu K, Dawson PE, Dawson G. Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activities in brain-derived cells. J Neurochem 2016; 139:872-885. [PMID: 27622309 DOI: 10.1111/jnc.13841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022]
Abstract
The use of RNAi to suppress protein synthesis offers a potential way of reducing the level of enzymes or the synthesis of mutant toxic proteins but there are few tools currently available for their delivery. To address this problem, bioconjugated quantum dots (QDs) containing a hydrophobic component (N-palmitate) and a sequence VKIKK designed to traverse across cell membranes and visualize drug delivery were developed and tested on cell lines of brain origin. We used the Zn outer shell of the QD to bind HIS6 in JB577 (W•G•Dap(N-Palmitoyl)•VKIKK•P9 •G2 •H6 ) and by a gel-shift assay showed that siRNAs would bind to the positively charged KIKK sequence. By comparing many peptides and QD coatings, we showed that the QD-JB577-siRNA construct was taken up by cells of nervous system origin, distributed throughout the cytosol, and inhibited protein synthesis, implying that JB577 was also promoting endosome egress. By attaching siRNA for luciferase in a cell line over-expressing luciferase, we showed 70% inhibition of mRNA after 24-48 h. To show more specific effects, we synthesized siRNA for neutral (NSMase2), acid (lysosomal ASMase) sphingomyelinase, and sphingosine kinase 1 (SK1), we demonstrated a dose-dependent inhibition of activity. These data suggest that QDs are a useful siRNA delivery tool and QD-siRNA could be a potential theranostic for a variety of diseases.
Collapse
Affiliation(s)
- Ted Getz
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Igor L Medintz
- US Naval Research Labs, Washington, District of Columbia, USA
| | | | - Kimihiro Susumu
- US Naval Research Labs, Washington, District of Columbia, USA
| | | | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016; 103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023]
Abstract
Acquired immune deficiency syndrome has been one of the most devastating epidemics of the last century. The current estimate for people living with the HIV is 36.9 million. Today, despite availability of potent and safe drugs for effective treatment, lifelong therapy is required for preventing HIV re-emergence from a pool of latently infected cells. However, recent evidence show the importance to expand HIV testing, to offer antiretroviral treatment to all infected individuals, and to ensure retention through all the cascade of care. In addition, circumcision, pre-exposure prophylaxis, and other biomedical tools are now available for included in a comprehensive preventive package. Use of all the available tools might allow cutting the HIV transmission in 2030. In this article, we review the status of the epidemic, the latest advances in prevention and treatment, the concept of treatment as prevention and the challenges and opportunities for the HIV cure agenda.
Collapse
|
34
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
35
|
Galdiero S, Falanga A, Morelli G, Galdiero M. gH625: a milestone in understanding the many roles of membranotropic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:16-25. [PMID: 25305339 PMCID: PMC7124228 DOI: 10.1016/j.bbamem.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/05/2022]
Abstract
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood–brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. Membranotropic peptides and their therapeutic applications Membrane fusion, viral inhibition, drug delivery gH625, a peptide derived from Herpes simplex virus type I: a case study gH625 in vitro and in vivo delivery across the blood–brain barrier
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
36
|
Gomes MJ, Neves JD, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 2014; 9:1757-69. [PMID: 24741312 PMCID: PMC3984056 DOI: 10.2147/ijn.s45886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood-brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood-brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS.
Collapse
Affiliation(s)
| | - José das Neves
- Instituto de Engenharia Biomédica (INEB), Porto, Portugal ; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal
| | - Bruno Sarmento
- Instituto de Engenharia Biomédica (INEB), Porto, Portugal ; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal
| |
Collapse
|
37
|
Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol 2013; 4:140. [PMID: 24298256 PMCID: PMC3828669 DOI: 10.3389/fphar.2013.00140] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/19/2013] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a complex physiological checkpoint that restricts the free diffusion of circulating molecules from the blood into the central nervous system. Delivering of drugs and other active agents across the BBB is one of the major technical challenges faced by scientists and medical practitioners. Therefore, development of novel methodologies to address this challenge holds the key for both the diagnosis and treatment of brain diseases, such as HIV-associated encephalopathy. Bioconjugated quantum dots (QDs) are excellent fluorescent probes and nano-vectors, being designed to transverse across the BBB and visualize drug delivery inside the brain. This paper discusses the use of functionalized QDs for crossing the blood–brain barrier and treating brain disease. We highlight the guidelines for using in vitro BBB models for brain disease studies. The theranostic QDs offers a strategy to significantly improve the effective dosages of drugs to transverse across the BBB and orientate to the targets inside the brain.
Collapse
Affiliation(s)
- Gaixia Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University Shenzhen, China
| | | | | | | |
Collapse
|
38
|
Boese AS, Majer A, Saba R, Booth SA. Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 2013; 8:1265-84. [DOI: 10.1517/17460441.2013.818976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Guarnieri D, Falanga A, Muscetti O, Tarallo R, Fusco S, Galdiero M, Galdiero S, Netti PA. Shuttle-mediated nanoparticle delivery to the blood-brain barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:853-862. [PMID: 23135878 DOI: 10.1002/smll.201201870] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Many therapeutic drugs are excluded from entering the brain due to their lack of transport through the blood-brain barrier (BBB). The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. To overcome this problem, a viral fusion peptide (gH625) derived from the glycoprotein gH of Herpes simplex virus type 1 is developed, which possesses several advantages including high cell translocation potency, absence of toxicity of the peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it is hypothesized that brain delivery of nanoparticles conjugated with gH625 should be efficiently enhanced. The surface of fluorescent aminated polystyrene nanoparticles (NPs) is functionalized with gH625 via a covalent binding procedure, and the NP uptake mechanism and permeation across in vitro BBB models are studied. At early incubation times, the uptake of NPs with gH625 by brain endothelial cells is greater than that of the NPs without the peptide, and their intracellular motion is mainly characterized by a random walk behavior. Most importantly, gH625 peptide decreases NP intracellular accumulation as large aggregates and enhances the NP BBB crossing. In summary, these results establish that surface functionalization with gH625 may change NP fate by providing a good strategy for the design of promising carriers to deliver drugs across the BBB for the treatment of brain diseases.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, Yong KT, Roy I, Prasad PN, Schwartz SA. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7:5301-14. [PMID: 23055735 PMCID: PMC3468275 DOI: 10.2147/ijn.s25871] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The advent of highly active antiretroviral therapy (HAART) has significantly improved the prognosis for human immunodeficiency virus (HIV)-infected patients, however the adverse side effects associated with prolonged HAART therapy use continue. Although systemic viral load can be undetectable, the virus remains sequestered in anatomically privileged sites within the body. Nanotechnology-based delivery systems are being developed to target the virus within different tissue compartments and are being evaluated for their safety and efficacy. The current review outlines the various nanomaterials that are becoming increasingly used in biomedical applications by virtue of their robustness, safety, multimodality, and multifunctionality. Nanotechnology can revolutionize the field of HIV medicine by not only improving diagnosis, but also by improving delivery of antiretrovirals to targeted regions in the body and by significantly enhancing the efficacy of the currently available antiretroviral medications.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Buffalo Niagara Medical Campus, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|