1
|
Mattheisen JM, Limberakis C, Ruggeri RB, Dowling MS, Am Ende CW, Ceraudo E, Huber T, McClendon CL, Sakmar TP. Bioorthogonal Tethering Enhances Drug Fragment Affinity for G Protein-Coupled Receptors in Live Cells. J Am Chem Soc 2023; 145:11173-11184. [PMID: 37116188 DOI: 10.1021/jacs.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate diverse cellular signaling pathways and are important drug targets. Despite the availability of high-resolution structures, the discovery of allosteric modulators remains challenging due to the dynamic nature of GPCRs in native membranes. We developed a strategy to covalently tether drug fragments adjacent to allosteric sites in GPCRs to enhance their potency and enable fragment-based drug screening in cell-based systems. We employed genetic code expansion to site-specifically introduce noncanonical amino acids with reactive groups in C-C chemokine receptor 5 (CCR5) near an allosteric binding site for the drug maraviroc. We then used molecular dynamics simulations to design heterobifunctional maraviroc analogues consisting of a drug fragment connected by a flexible linker to a reactive moiety capable of undergoing a bioorthogonal coupling reaction. We synthesized a library of these analogues and employed the bioorthogonal inverse electron demand Diels-Alder reaction to couple the analogues to the engineered CCR5 in live cells, which were then assayed using cell-based signaling assays. Tetherable low-affinity maraviroc fragments displayed an increase in potency for CCR5 engineered with reactive unnatural amino acids that were adjacent to the maraviroc binding site. The strategy we describe to tether novel drug fragments to GPCRs should prove useful to probe allosteric or cryptic binding site functionality in fragment-based GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Jordan M Mattheisen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Chris Limberakis
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Roger B Ruggeri
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Christopher W Am Ende
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Christopher L McClendon
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
2
|
Liauw BWH, Foroutan A, Schamber MR, Lu W, Samareh Afsari H, Vafabakhsh R. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. eLife 2022; 11:e78982. [PMID: 35775730 PMCID: PMC9299836 DOI: 10.7554/elife.78982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed fluorescence resonance energy transfer (FRET) sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM (egative allosteric modulator) increases the occupancy of one of the intermediate states while a positive allosteric modulator increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.
Collapse
Affiliation(s)
| | - Arash Foroutan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michael R Schamber
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Weifeng Lu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hamid Samareh Afsari
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
3
|
Schamber MR, Vafabakhsh R. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Nat Commun 2022; 13:2194. [PMID: 35459864 PMCID: PMC9033857 DOI: 10.1038/s41467-022-29897-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Transfer of information across membranes is fundamental to the function of all organisms and is primarily initiated by transmembrane receptors. For many receptors, how ligand sensitivity is fine-tuned and how disease associated mutations modulate receptor conformation to allosterically affect receptor sensitivity are unknown. Here we map the activation of the calcium-sensing receptor (CaSR) - a dimeric class C G protein-coupled receptor (GPCR) and responsible for maintaining extracellular calcium in vertebrates. We show that CaSR undergoes unique conformational rearrangements compared to other class C GPCRs owing to specific structural features. Moreover, by analyzing disease associated mutations, we uncover a large permissiveness in the architecture of the extracellular domain of CaSR, with dynamics- and not specific receptor topology- determining the effect of a mutation. We show a structural hub at the dimer interface allosterically controls CaSR activation via focused electrostatic repulsion. Changes in the surface charge distribution of this hub, which is highly variable between organisms, finely tune CaSR sensitivity. This is potentially a general tuning mechanism for other dimeric receptors.
Collapse
Affiliation(s)
- Michael R Schamber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Efficient Amber Suppression via Ribosomal Skipping for In Situ Synthesis of Photoconditional Nanobodies. ACS Synth Biol 2022; 11:1466-1476. [PMID: 35060375 PMCID: PMC9157392 DOI: 10.1021/acssynbio.1c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| |
Collapse
|
5
|
Abstract
Research on type 1 rhodopsins spans now a history of 50 years. Originally, just archaeal ion pumps and sensors have been discovered. However, with modern genetic techniques and gene sequencing tools, more and more proteins were identified in all kingdoms of life. Spectroscopic and other biophysical studies revealed quite diverse functions. Ion pumps, sensors, and channels are imprinted in the same seven-helix transmembrane protein scaffold carrying a retinal prosthetic group. In this review, molecular biology methods are described, which enabled the elucidation of their function and structure leading to optogenetic applications.
Collapse
Affiliation(s)
- Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
6
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
7
|
Yang Z, Xu H, Wang J, Chen W, Zhao M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. APPLIED SPECTROSCOPY 2021; 75:491-505. [PMID: 33825543 DOI: 10.1177/00037028211009973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence-based single-molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labeling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labeling sites, experimental setup, and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| |
Collapse
|
8
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Wong JJ, Chen Z, Chung JK, Groves JT, Jardetzky TS. EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. SCIENCE ADVANCES 2021; 7:eabe1235. [PMID: 33571127 PMCID: PMC7840137 DOI: 10.1126/sciadv.abe1235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Paramyxovirus membrane fusion requires an attachment protein that binds to a host cell receptor and a fusion protein that merges the viral and host membranes. For Nipah virus (NiV), the G attachment protein binds ephrinB2/B3 receptors and activates F-mediated fusion. To visualize dynamic events of these proteins at the membrane interface, we reconstituted NiV fusion activation by overlaying F- and G-expressing cells onto ephrinB2-functionalized supported lipid bilayers and used TIRF microscopy to follow F, G, and ephrinB2. We found that G and ephrinB2 form clusters and that oligomerization of ephrinB2 is necessary for F activation. Single-molecule tracking of F particles revealed accumulation of an immobilized intermediate upon activation. We found no evidence for stable F-G protein complexes before or after activation. These observations lead to a revised model for NiV fusion activation and provide a foundation for investigating other multicomponent viral fusion systems.
Collapse
Affiliation(s)
- Joyce J Wong
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Zhongwen Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
10
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Britton ZT, London TB, Carrell J, Dosanjh B, Wilkinson T, Bowen MA, Wu H, Dall’Acqua WF, Marelli M, Mazor Y. Tag-on-Demand: exploiting amber codon suppression technology for the enrichment of high-expressing membrane protein cell lines. Protein Eng Des Sel 2019; 31:389-398. [DOI: 10.1093/protein/gzy032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zachary T Britton
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Timothy B London
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
- Current affiliation: TC BioPharm Limited, Glasgow, UK
| | - Jeffrey Carrell
- Respiratory, Inflammation and Autoimmune, MedImmune, Gaithersburg, MD, USA
| | - Bhupinder Dosanjh
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | | | - Marcello Marelli
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Yariv Mazor
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| |
Collapse
|
12
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
13
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
14
|
Serfling R, Seidel L, Böttke T, Coin I. Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells. J Vis Exp 2018. [PMID: 29683449 DOI: 10.3791/57069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) via amber stop codon suppression is a powerful technique to install artificial probes and reactive moieties onto proteins directly in the live cell. Each ncAA is incorporated by a dedicated orthogonal suppressor-tRNA/amino-acyl-tRNA-synthetase (AARS) pair that is imported into the host organism. The incorporation efficiency of different ncAAs can greatly differ, and be unsatisfactory in some cases. Orthogonal pairs can be improved by manipulating either the AARS or the tRNA. However, directed evolution of tRNA or AARS using large libraries and dead/alive selection methods are not feasible in mammalian cells. Here, a facile and robust fluorescence-based assay to evaluate the efficiency of orthogonal pairs in mammalian cells is presented. The assay allows screening tens to hundreds of AARS/tRNA variants with a moderate effort and within a reasonable time. Use of this assay to generate new tRNAs that significantly improve the efficiency of the pyrrolysine orthogonal system is described, along with the application of ncAAs to the study of G-protein coupled receptors (GPCRs), which are challenging objects for ncAA mutagenesis. First, by systematically incorporating a photo-crosslinking ncAA throughout the extracellular surface of a receptor, binding sites of different ligands on the intact receptor are mapped directly in the live cell. Second, by incorporating last-generation ncAAs into a GPCR, ultrafast catalyst-free receptor labeling with a fluorescent dye is demonstrated, which exploits bioorthogonal strain-promoted inverse Diels Alder cycloaddition (SPIEDAC) on the live cell. As ncAAs can be generally applied to any protein independently on its size, the method is of general interest for a number of applications. In addition, ncAA incorporation does not require any special equipment and is easily performed in standard biochemistry labs.
Collapse
Affiliation(s)
- Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Lisa Seidel
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Thore Böttke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig;
| |
Collapse
|
15
|
Tian H, Sakmar TP, Huber T. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophys J 2017; 113:60-72. [PMID: 28700926 DOI: 10.1016/j.bpj.2017.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photoreceptor rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that stabilizes its inverse agonist ligand, 11-cis-retinal (11CR), by a covalent, protonated Schiff base linkage. In the visual dark adaptation, the fundamental molecular event after photobleaching of rhodopsin is the recombination reaction between its apoprotein opsin and 11CR. Here we present a detailed analysis of the kinetics and thermodynamics of this reaction, also known as the "regeneration reaction". We compared the regeneration of purified rhodopsin reconstituted into phospholipid/detergent bicelles with rhodopsin reconstituted into detergent micelles. We found that the lipid bilayer of bicelles stabilized the chromophore-free opsin over the long timescale required for the regeneration experiments, and also facilitated the ligand reuptake binding reaction. We utilized genetic code expansion and site-specific bioorthogonal labeling of rhodopsin with Alexa488 to enable, to our knowledge, a novel fluorescence resonance energy transfer-based measurement of the binding kinetics between opsin and 11CR. Based on these results, we report a complete energy diagram for the regeneration reaction of rhodopsin. We show that the dissociation reaction of rhodopsin to 11CR and opsin has a 25-pM equilibrium dissociation constant, which corresponds to only 0.3 kcal/mol stabilization compared to the noncovalent, tightly bound antagonist-GPCR complex of iodopindolol and β-adrenergic receptor. However, 11CR dissociates four orders-of-magnitude slower than iodopindolol, which corresponds to a 6-kcal/mol higher dissociation free energy barrier. We further used isothermal titration calorimetry to show that ligand binding in rhodopsin is enthalpy driven with -22 kcal/mol, which is 12 kcal/mol more stable than the antagonist-GPCR complex. Our data provide insights into the ligand-receptor binding reaction for rhodopsin in particular, and for GPCRs more broadly.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
16
|
Cai Y, Liu Y, Culhane KJ, DeVree BT, Yang Y, Sunahara RK, Yan ECY. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor. PLoS One 2017; 12:e0179568. [PMID: 28609478 PMCID: PMC5469476 DOI: 10.1371/journal.pone.0179568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.
Collapse
Affiliation(s)
- Yingying Cai
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Yuting Liu
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Kelly J. Culhane
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Brian T. DeVree
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Yang
- Nanobiology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Roger K. Sunahara
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
17
|
Völler JS, Biava H, Hildebrandt P, Budisa N. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy. Biochim Biophys Acta Gen Subj 2017; 1861:3053-3059. [PMID: 28229928 DOI: 10.1016/j.bbagen.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. SCOPE OF REVIEW This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. MAJOR CONCLUSIONS ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. GENERAL SIGNIFICANCE Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany; Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| |
Collapse
|
18
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
19
|
Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 2016; 570:389-420. [PMID: 26921956 DOI: 10.1016/bs.mie.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Lauren G Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ling Qin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tracy M Handel
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
20
|
Bioorthogonal Labeling of Ghrelin Receptor to Facilitate Studies of Ligand-Dependent Conformational Dynamics. ACTA ACUST UNITED AC 2015; 22:1431-1436. [DOI: 10.1016/j.chembiol.2015.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023]
|
21
|
Tian H, Sakmar TP, Huber T. Micelle-Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipid-Embedded Surface of a GPCR. Chembiochem 2015; 16:1314-22. [PMID: 25962668 PMCID: PMC5287413 DOI: 10.1002/cbic.201500030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Genetically encoded p-azido-phenylalanine (azF) residues in G protein-coupled receptors (GPCRs) can be targeted with dibenzocyclooctyne-modified (DIBO-modified) fluorescent probes by means of strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC). Here we show that azF residues situated on the transmembrane surfaces of detergent-solubilized receptors exhibit up to 1000-fold rate enhancement relative to azF residues on water-exposed surfaces. We show that the amphipathic moment of the labeling reagent, consisting of hydrophobic DIBO coupled to hydrophilic Alexa dye, results in strong partitioning of the DIBO group into the hydrocarbon core of the detergent micelle and consequently high local reactant concentrations. The observed rate constant for the micelleenhanced SpAAC is comparable with those of the fastest bioorthogonal labeling reactions known. Targeting hydrophobic regions of membrane proteins by use of micelle-enhanced SpAAC should expand the utility of bioorthogonal labeling strategies.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge (Sweden).
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
| |
Collapse
|
22
|
Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proc Natl Acad Sci U S A 2015; 112:1601-6. [PMID: 25605885 DOI: 10.1073/pnas.1414618112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
How G protein-coupled receptor conformational dynamics control G protein coupling to trigger signaling is a key but still open question. We addressed this question with a model system composed of the purified ghrelin receptor assembled into lipid discs. Combining receptor labeling through genetic incorporation of unnatural amino acids, lanthanide resonance energy transfer, and normal mode analyses, we directly demonstrate the occurrence of two distinct receptor:Gq assemblies with different geometries whose relative populations parallel the activation state of the receptor. The first of these assemblies is a preassembled complex with the receptor in its basal conformation. This complex is specific of Gq and is not observed with Gi. The second one is an active assembly in which the receptor in its active conformation triggers G protein activation. The active complex is present even in the absence of agonist, in a direct relationship with the high constitutive activity of the ghrelin receptor. These data provide direct evidence of a mechanism for ghrelin receptor-mediated Gq signaling in which transition of the receptor from an inactive to an active conformation is accompanied by a rearrangement of a preassembled receptor:G protein complex, ultimately leading to G protein activation and signaling.
Collapse
|
23
|
Naganathan S, Ray-Saha S, Park M, Tian H, Sakmar TP, Huber T. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids. Biochemistry 2015; 54:776-86. [PMID: 25524496 PMCID: PMC4310623 DOI: 10.1021/bi501267x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
We developed a strategy for identifying
positions in G protein-coupled
receptors that are amenable to bioorthogonal modification with a peptide
epitope tag under cell culturing conditions. We introduced the unnatural
amino acid p-azido-l-phenylalanine (azF)
into human CC chemokine receptor 5 (CCR5) at site-specific amber codon
mutations. We then used strain-promoted azide–alkyne [3+2]
cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated
aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich
fluorophore-linked immunosorbent assay was used to probe simultaneously
the FLAG epitope and the receptor using infrared dye-conjugated antibodies
so that the extent of DBCO incorporation, corresponding nominally
to labeling efficiency, could be quantified ratiometrically. The extent
of incorporation of DBCO at the various sites was evaluated in the
context of a recent crystal structure of maraviroc-bound CCR5. We
observed that labeling efficiency varied dramatically depending on
the topological location of the azF in CCR5. Interestingly, position
109 in transmembrane helix 3, located in a hydrophobic cavity on the
extracellular side of the receptor, was labeled most efficiently.
Because the bioorthogonal labeling and detection strategy described
might be used to introduce a variety of different peptide epitopes
or fluorophores into engineered expressed receptors, it might prove
to be useful for a wide range of applications, including single-molecule
detection studies of receptor trafficking and signaling mechanism.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | | | | | | | | | | |
Collapse
|
24
|
Park M, Tian H, Naganathan S, Sakmar TP, Huber T. Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs. Methods Mol Biol 2015; 1335:67-93. [PMID: 26260595 DOI: 10.1007/978-1-4939-2914-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe multiple bioorthogonal approaches to label G protein-coupled receptors (GPCRs) heterologously expressed in mammalian cells. The use of genetically encoded unnatural amino acids as bioorthogonal tags results in receptors that are expressed at lower levels than even their low abundance wild-type counterparts. Therefore, reproducible and sensitive quantification of the labeled GPCRs is extremely important and conventional methods are simply not sufficiently accurate and precise. Silver stains lack reproducibility, spectroscopic methods using fluorescent ligands are limited to quantifying only functional receptor molecules, and immunoassays using epitope tags derived from rhodopsin are particularly variable for low-abundance GPCRs. To avoid these shortcomings, we employ near infrared (NIR) imaging-based methods that enable simultaneous multi-color detection of two different antigens, thus facilitating the ratiometric analysis of bioorthogonally modified GPCRs. We anticipate that these multi-color detection strategies will provide new tools for quantitatively assessing stoichiometrically labeled GPCRs for studies of signalosomes and for structure-function relationships at a single molecule level.
Collapse
Affiliation(s)
- Minyoung Park
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
25
|
Huber T, Sakmar T. Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. ACTA ACUST UNITED AC 2014; 21:1224-37. [DOI: 10.1016/j.chembiol.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
|
26
|
Tian H, Naganathan S, Kazmi MA, Schwartz TW, Sakmar TP, Huber T. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors. Chembiochem 2014; 15:1820-9. [PMID: 25045132 DOI: 10.1002/cbic.201402193] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/12/2022]
Abstract
Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal reactions to label genetically encoded p-acetyl-L-phenylalanine (AcF) or p-azido-L-phenylalanine (azF) residues in receptors heterologously expressed in mammalian cells. We found that keto-selective reagents were not truly bioorthogonal, possibly owing to post-translational protein oxidation reactions. In contrast, the strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC) with dibenzocyclooctyne (DIBO) reagents yielded stoichiometric conjugates with azF-rhodopsin while undergoing negligible background reactions. As one application of this technique, we used Alexa488-rhodopsin to measure the kinetics of ligand uptake and release in membrane-mimetic bicelles using a novel fluorescence-quenching assay.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | | | | | | | | | | |
Collapse
|
27
|
Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces. Proc Natl Acad Sci U S A 2014; 111:6081-6. [PMID: 24715733 DOI: 10.1073/pnas.1318808111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.
Collapse
|
28
|
Ray-Saha S, Huber T, Sakmar TP. Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry 2014; 53:1302-10. [PMID: 24490954 PMCID: PMC3985944 DOI: 10.1021/bi401289p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
We
developed a strategy for creating epitope maps of monoclonal
antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs)
containing photo-cross-linkers. Using human CXC chemokine receptor
4 (CXCR4) as a model system, we genetically incorporated the photolabile
unnatural amino acid p-azido-l-phenylalanine
(azF) at various positions within extracellular loop 2 (EC2). We then
mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using
targeted loss-of-function studies and photo-cross-linking in whole
cells in a microplate-based format. We used a novel variation of a
whole cell enzyme-linked immunosorbent assay to quantitate cross-linking
efficiency. 12G5 cross-linked primarily to residues 184, 178, and
189 in EC2 of CXCR4. Mapping of the data to the crystal structure
of CXCR4 showed a distinct mAb epitope footprint with the photo-cross-linked
residues clustered around the loss-of-function sites. We also used
the targeted photo-cross-linking approach to study the interaction
of human CC chemokine receptor 5 (CCR5) with PRO 140, a humanized
mAb that inhibits human immunodeficiency virus-1 cellular entry, and
2D7. The mAbs produced distinct cross-linking patterns on EC2 of CCR5.
PRO 140 cross-linked primarily to residues 174 and 175 at the amino-terminal
end of EC2, and 2D7 cross-linked mainly to residues 170, 176, and
184. These results were mapped to the recent crystal structure of
CCR5 in complex with maraviroc, showing cross-linked residues at the
tip of the maraviroc binding crevice formed by EC2. As a strategy
for mapping mAb epitopes on GPCRs, our targeted photo-cross-linking
method is complementary to loss-of-function mutagenesis results and
should be especially useful for studying mAbs with discontinuous epitopes.
Collapse
Affiliation(s)
- Sarmistha Ray-Saha
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
29
|
Mitra N. Incorporating Unnatural Amino Acids into Recombinant Proteins in Living Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.13070/mm.en.3.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|