1
|
Suzuki T. [Hetero-oligomerization and Functional Interaction between Purinergic Receptors Expressed in Platelets to Regulate Platelet Shape Change]. YAKUGAKU ZASSHI 2016; 135:1335-40. [PMID: 26632148 DOI: 10.1248/yakushi.15-00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine and its precursors, ATP and ADP, exert various physiological effects via binding to purinergic receptors. We previously used co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and immunoelectron microscopy to demonstrate the hetero-oligomerization of purinergic receptor subtypes. Furthermore, pharmacological studies found significant changes in receptor-mediated signaling in human embryonic kidney (HEK) 293T cells co-transfected with these receptors. These findings suggest that heterodimers of purinergic receptors may have distinct pharmacological profiles, possibly due to dimerization-induced conformational changes, further suggesting that hetero-dimerization may be employed to "fine-tune" purinergic receptor signaling. Adenosine A(2A) receptor (A(2A)R), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. ADP activates human platelets by stimulating both P2Y1R and P2Y12R, which act sequentially and in concert to achieve complete platelet aggregation. In contrast, adenosine stimulates Gs-coupled A(2A)R, followed by activativation of adenylate cyclase, leading to an increase in intracellular cAMP levels, which potently inhibits platelet activation. We examined the hetero-oligomerization and functional interactions of A(2A)R, P2Y1R, and P2Y12R. In HEK293T cells triply expressing all three receptors, hetero-oligomerization was observed among the three receptors. Additionally, P2Y1R agonist-evoked Ca(2+) signaling was significantly inhibited by co-treatment with an A(2A)R antagonist in HEK293T cells. In human platelets, we identified endogenous A(2A)R/P2Y1R and A(2A)R/P2Y12R heterodimers. We also observed functional Ca(2+)-signaling-related cross-talk similar to those found in HEK293T cells, and found that they appeared to affect platelet shape. These results collectively suggest that intermolecular signal transduction and specific conformational changes occur among components of the hetero-oligomers formed by these three receptors.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
2
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
4
|
Bai B, Jiang Y, Cai X, Chen J. Dynamics of apelin receptor/G protein coupling in living cells. Exp Cell Res 2014; 328:401-9. [DOI: 10.1016/j.yexcr.2014.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/29/2014] [Accepted: 08/24/2014] [Indexed: 02/07/2023]
|
5
|
Mizuno N, Suzuki T, Kishimoto Y, Hirasawa N. Biochemical assay of G protein-coupled receptor oligomerization: adenosine A1 and thromboxane A2 receptors form the novel functional hetero-oligomer. Methods Cell Biol 2014; 117:213-27. [PMID: 24143980 DOI: 10.1016/b978-0-12-408143-7.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are classified into a family of seven transmembrane receptors. Receptor oligomerization may be the key to the expression and function of these receptors, for example, ligand binding, desensitization, membrane trafficking, and signaling. The accumulation of evidence that GPCRs form an oligomerization with a functional alternation may change the strategy for the discovery of novel drugs targeting GPCRs. Identification of the oligomer is essential to elucidate GPCR oligomerization. GPCR oligomerizations have been demonstrated using various biochemical approaches, which include the coimmunoprecipitation method, fluorescence resonance energy transfer assay, and bioluminescence RET assay. Thus, various assays are useful for the study of GPCR oligomerization, and we should choose the best method to match the purpose. We previously targeted adenosine A1 and thromboxane A2 (TP) receptors to form a functionally novel hetero-oligomer, since both receptors function in the same cells. This chapter describes the methods used to detect GPCR oligomerization and alterations in the signaling pathways, principally according to our findings on oligomerization between adenosine A1 and TPα receptors.
Collapse
MESH Headings
- Binding, Competitive
- Bioluminescence Resonance Energy Transfer Techniques/methods
- Cyclic AMP/metabolism
- Gene Expression
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Immunoprecipitation
- Kinetics
- Luciferases, Renilla/genetics
- Luciferases, Renilla/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Plasmids
- Protein Binding
- Protein Multimerization
- Protein Transport
- Receptor, Adenosine A1/chemistry
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Natsumi Mizuno
- Department of Pharmacotherapy of Life-style Related Disease, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
6
|
Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, Duchou J, Van Craenenbroeck K, Suárez-Boomgaard D, Rivera A, Guidolin D, Agnati LF, Fuxe K. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 2014; 15:8570-90. [PMID: 24830558 PMCID: PMC4057749 DOI: 10.3390/ijms15058570] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023] Open
Abstract
G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/~ismel/GPCR-Nets/index.html.
Collapse
Affiliation(s)
| | - Ismel Brito
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | | | - Michael Di Palma
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | - Julia Oflijan
- Department of Physiology, Faculty of Medicine, University of Tartu, Tartu 50411, Estonia.
| | - Kamila Skieterska
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Jolien Duchou
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Diana Suárez-Boomgaard
- Department of Cell Biology, School of Science, University of Málaga, 29071 Málaga, Spain.
| | - Alicia Rivera
- Department of Cell Biology, School of Science, University of Málaga, 29071 Málaga, Spain.
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| | - Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|