1
|
Chen H, Sahu SK, Wang S, Liu J, Yang J, Cheng L, Chiu TY, Liu H. Chromosome-level Alstonia scholaris genome unveils evolutionary insights into biosynthesis of monoterpenoid indole alkaloids. iScience 2024; 27:109599. [PMID: 38646178 PMCID: PMC11033161 DOI: 10.1016/j.isci.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.
Collapse
Affiliation(s)
- Haixia Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jinlong Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Le Cheng
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Tsan-Yu Chiu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| |
Collapse
|
2
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
4
|
Habib MA, Islam MM, Islam MM, Hasan MM, Baek KH. Current Status and De Novo Synthesis of Anti-Tumor Alkaloids in Nicotiana. Metabolites 2023; 13:metabo13050623. [PMID: 37233664 DOI: 10.3390/metabo13050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Alkaloids are the most diversified nitrogen-containing secondary metabolites, having antioxidant and antimicrobial properties, and are extensively used in pharmaceuticals to treat different types of cancer. Nicotiana serves as a reservoir of anti-cancer alkaloids and is also used as a model plant for the de novo synthesis of various anti-cancer molecules through genetic engineering. Up to 4% of the total dry weight of Nicotiana was found to be composed of alkaloids, where nicotine, nornicotine, anatabine, and anabasine are reported as the dominant alkaloids. Additionally, among the alkaloids present in Nicotiana, β-carboline (Harmane and Norharmane) and Kynurenines are found to show anti-tumor effects, especially in the cases of colon and breast cancers. Creating new or shunting of existing biosynthesis pathways in different species of Nicotiana resulted in de novo or increased synthesis of different anti-tumor molecules or their derivatives or precursors including Taxadiane (~22.5 µg/g), Artemisinin (~120 μg/g), Parthenolide (~2.05 ng/g), Costunolide (~60 ng/g), Etoposide (~1 mg/g), Crocin (~400 µg/g), Catharanthine (~60 ng/g), Tabersonine (~10 ng/g), Strictosidine (~0.23 mg/g), etc. Enriching the precursor pool, especially Dimethylallyl Diphosphate (DMAPP), down-regulating other bi-product pathways, compartmentalization or metabolic shunting, or organelle-specific reconstitution of the precursor pool, might trigger the enhanced accumulation of the targeted anti-cancer alkaloid in Nicotiana.
Collapse
Affiliation(s)
- Md Ahsan Habib
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mobinul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mukul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Milne N, Sáez-Sáez J, Nielsen AM, Dyekjaer JD, Rago D, Kristensen M, Wulff T, Borodina I. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen 2023; 12:e202200266. [PMID: 36929157 PMCID: PMC10068768 DOI: 10.1002/open.202200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.
Collapse
Affiliation(s)
- Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annette Munch Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Jane Dannow Dyekjaer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Li F, Bordeleau S, Kim KH, Turcotte J, Davis B, Liu L, Bayen S, De Luca V, Dastmalchi M. A lesion-mimic mutant of Catharanthus roseus accumulates the opioid agonist, akuammicine. PHYTOCHEMISTRY 2022; 203:113422. [PMID: 36055422 DOI: 10.1016/j.phytochem.2022.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Catharanthus roseus is a medicinal plant that produces an abundance of monoterpenoid indole alkaloids (MIAs), notably including the anticancer compounds vinblastine and vincristine. While the canonical pathway leading to these drugs has been resolved, the regulatory and catalytic mechanisms controlling many lateral branches of MIA biosynthesis remain largely unknown. Here, we describe an ethyl methanesulfonate (EMS) C. roseus mutant (M2-117523) that accumulates high levels of MIAs. The mutant exhibited stunted growth, partially chlorotic leaves, with deficiencies in chlorophyll biosynthesis, and a lesion-mimic phenotype. The lesions were sporadic and spontaneous, appearing after the first true bifoliate and continuing throughout development. The lesions are also the site of high concentrations of akuammicine, a minor constituent of wild type C. roseus leaves. In addition to akuammicine, the lesions were enriched in 25 other MIAs, resulting, in part, from a higher metabolic flux through the pathway. The unique metabolic shift was associated with significant upregulation of biosynthetic and regulatory genes involved in the MIA pathway, including the transcription factors WRKY1, CrMYC2, and ORCA2, and the biosynthetic genes STR, GO, and Redox1. Following the lesion-mimic mutant (LMM) phenotype, the accumulation of akuammicine is jasmonate (JA)-inducible, suggesting a role in plant defence response. Akuammicine is medicinally significant, as a weak opioid agonist, with a preference for the κ-opioid receptor, and a potential anti-diabetic. Further study of akuammicine biosynthesis and regulation can guide plant and heterologous engineering for medicinal uses.
Collapse
Affiliation(s)
- Fanfan Li
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stephen Bordeleau
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Kyung Hee Kim
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan Turcotte
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Benjamin Davis
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lan Liu
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stéphane Bayen
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Vincenzo De Luca
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
7
|
Mistry V, Tiwari P, Patel P, Vishwakarma GS, Lee GJ, Sharma A. Ethyl Methane Sulfonate and Sodium Azide-Mediated Chemical and X-ray-Mediated Physical Mutagenesis Positively Regulate Peroxidase 1 Gene Activity and Biosynthesis of Antineoplastic Vinblastine in Catharanthus roseus. PLANTS (BASEL, SWITZERLAND) 2022; 11:2885. [PMID: 36365340 PMCID: PMC9656251 DOI: 10.3390/plants11212885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Catharanthus roseus synthesizes bioactive therapeutic metabolites, known as monoterpenoid indole alkaloids (MIAs), including antineoplastic vinblastine and vincristine, which have high global demand, and antihypertensive ajmalicine, a serpentine. However, the in planta biosynthesis and accumulation of these phytopharmaceuticals are very low, attributed to their high cytotoxicity in the plant. Considering the low in planta concentration and over-harvesting of plant resources, biotechnological interventions have been undertaken to enhance the production of MIAs in plant systems. The present study was carried out to mutation through chemical and physical mutagenesis with sodium azide, ethyl methane sulfonate and X-rays, respectively, on C. roseus to determine their possible effects on the transcriptional modulation of MIA biosynthetic pathways in planta. The chemical mutagenesis resulted in delayed seed pod development in mutated C. roseus plants, with distinct leaf morphology and flower color. However, X-ray mutagenesis resulted in pollen-less sterile flowers. An HPLC analysis confirmed the higher catharanthine, vindoline and vinblastine content in sodium azide and X-ray mutants, and was further supported by higher PRX1 transcript levels estimated through real-time PCR analysis. The transcription factors WRKY1 and ORCA2 were found negatively regulated along with major MIA pathway genes in chemical mutants and their M1 generation, but showed positive regulation in X-ray M0 mutants. The induced mutagenesis of C. roseus provides a prospective strategy to modulate plant transcriptomes and enhance the biosynthesis of pharmaceutically important antineoplastic vinblastine in the plant.
Collapse
Affiliation(s)
- Vyoma Mistry
- C. G. Bhakta Institute of Biotechnology, Maliba Campus, Uka Tarsadia University, Surat 394350, India
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Paresh Patel
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli 394350, India
| | - Gajendra Singh Vishwakarma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, India
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Abhishek Sharma
- C. G. Bhakta Institute of Biotechnology, Maliba Campus, Uka Tarsadia University, Surat 394350, India
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, India
| |
Collapse
|
8
|
Miller JC, Schuler MA. Single mutations toggle the substrate selectivity of multifunctional Camptotheca secologanic acid synthases (CYP72As). J Biol Chem 2022; 298:102237. [PMID: 35809640 PMCID: PMC9424959 DOI: 10.1016/j.jbc.2022.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Terpene indole alkaloids (TIAs) are plant-derived specialized metabolites with widespread use in medicine. Species-specific pathways derive various TIAs from common intermediates, strictosidine or strictosidinic acid, produced by coupling tryptamine with secologanin or secologanic acid. The penultimate reaction in this pathway is catalyzed by either secologanin synthase (SLS) or secologanic acid synthase (SLAS) according to whether plants produce secologanin from loganin or secologanic acid from loganic acid. Previous work has identified SLSs and SLASs from different species, but the determinants of selectivity remain unclear. Here, combining molecular modeling, ancestral sequence reconstruction, and biochemical methodologies, we identified key residues that toggle SLS and SLAS selectivity in two CYP72A (cytochrome P450) subfamily enzymes from Camptotheca acuminata. We found that the positions of foremost importance are in substrate recognition sequence 1 (SRS1), where mutations to either of two adjacent histidine residues switched selectivity; His131Phe selects for and increases secologanin production whereas His132Asp selects for secologanic acid production. Furthermore, a change in SRS3 in the predicted substrate entry channel (Arg/Lys270Thr) and another in SRS4 at the start of the I-helix (Ser324Glu) decreased enzyme activity toward either substrate. We propose that the Camptotheca SLASs have maintained the broadened activities found in a common asterid ancestor, even as the Camptotheca lineage lost its ability to produce loganin while the campanulid and lamiid lineages specialized to produce secologanin by acquiring mutations in SRS1. The identification here of the residues essential for the broad substrate scope of SLASs presents opportunities for more tailored heterologous production of TIAs.
Collapse
Affiliation(s)
- Justin C Miller
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 61801.
| |
Collapse
|
9
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Faltracco M, Damian M, Ruijter E. Synthesis of Carbazoles and Dihydrocarbazoles by a Divergent Cascade Reaction of Donor-Acceptor Cyclopropanes. Org Lett 2021; 23:7592-7596. [PMID: 34543040 PMCID: PMC8491164 DOI: 10.1021/acs.orglett.1c02795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An alkylation/olefination
cascade of indolecarboxaldehydes and
phosphonate-functionalized donor–acceptor cyclopropanes affords
functionalized dihydrocarbazoles and cyclohepta[cd]indoles in formal (3 + 3) and (4 + 3) cycloadditions. A minor modification
to the reaction conditions also allows access to the fully aromatic
heterocyclic scaffolds by thermal loss of an electron-rich aryl moiety.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matteo Damian
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Saya JM, Ruijter E, Orru RVA. Total Synthesis of
Aspidosperma
and
Strychnos
Alkaloids through Indole Dearomatization. Chemistry 2019; 25:8916-8935. [DOI: 10.1002/chem.201901130] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jordy M. Saya
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
14
|
Fellows R, Russo CM, Silva CS, Lee SG, Jez JM, Chisholm JD, Zubieta C, Nanao MH. A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily. Sci Rep 2018; 8:14796. [PMID: 30287897 PMCID: PMC6172241 DOI: 10.1038/s41598-018-32967-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
The short chain dehydrogenase/reductase superfamily (SDR) is a large family of NAD(P)H-dependent enzymes found in all kingdoms of life. SDRs are particularly well-represented in plants, playing diverse roles in both primary and secondary metabolism. In addition, some plant SDRs are also able to catalyse a reductive cyclisation reaction critical for the biosynthesis of the iridoid backbone that contains a fused 5 and 6-membered ring scaffold. Mining the EST database of Plantago major, a medicinal plant that makes iridoids, we identified a putative 5β-progesterone reductase gene, PmMOR (P. major multisubstrate oxido-reductase), that is 60% identical to the iridoid synthase gene from Catharanthus roseus. The PmMOR protein was recombinantly expressed and its enzymatic activity assayed against three putative substrates, 8-oxogeranial, citral and progesterone. The enzyme demonstrated promiscuous enzymatic activity and was able to not only reduce progesterone and citral, but also to catalyse the reductive cyclisation of 8-oxogeranial. The crystal structures of PmMOR wild type and PmMOR mutants in complex with NADP+ or NAD+ and either 8-oxogeranial, citral or progesterone help to reveal the substrate specificity determinants and catalytic machinery of the protein. Site-directed mutagenesis studies were performed and provide a foundation for understanding the promiscuous activity of the enzyme.
Collapse
Affiliation(s)
- Rachel Fellows
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | | | - Catarina S Silva
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France.,Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG, Grenoble, USA
| | - Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG, Grenoble, USA.
| | - Max H Nanao
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France.
| |
Collapse
|
15
|
Casini A, Chang FY, Eluere R, King AM, Young EM, Dudley QM, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Borujeni AE, Ryu MH, Li J, Kwon YC, Wang H, Tatsis E, Rodriguez-Lopez C, O’Connor S, Medema MH, Fischbach MA, Jewett MC, Voigt C, Gordon DB. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. J Am Chem Soc 2018; 140:4302-4316. [DOI: 10.1021/jacs.7b13292] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arturo Casini
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Fang-Yuan Chang
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Raissa Eluere
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew M. King
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Eric M. Young
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Quentin M. Dudley
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty Karim
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katelin Pratt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Cassandra Bristol
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anthony Forget
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amar Ghodasara
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Robert Warden-Rothman
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Rui Gan
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander Cristofaro
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amin Espah Borujeni
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Min-Hyung Ryu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Jian Li
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Yong-Chan Kwon
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - He Wang
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Tatsis
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Sarah O’Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Michael A. Fischbach
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering and Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, California 94305, United States
| | - Michael C. Jewett
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - D. Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| |
Collapse
|
16
|
Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J Biotechnol 2018; 267:19-28. [DOI: 10.1016/j.jbiotec.2017.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 11/19/2022]
|
17
|
Xu Z, Wang Q, Zhu J. Metamorphosis of cycloalkenes for the divergent total synthesis of polycyclic indole alkaloids. Chem Soc Rev 2018; 47:7882-7898. [DOI: 10.1039/c8cs00454d] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the divergent synthesis of monoterpene indole alkaloids using cycloalkene as the turning point of structural diversity.
Collapse
Affiliation(s)
- Zhengren Xu
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| | - Qian Wang
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| |
Collapse
|
18
|
Corbin C, Lafontaine F, Sepúlveda LJ, Carqueijeiro I, Courtois M, Lanoue A, Dugé de Bernonville T, Besseau S, Glévarec G, Papon N, Atehortúa L, Giglioli-Guivarc'h N, Clastre M, St-Pierre B, Oudin A, Courdavault V. Virus-induced gene silencing in Rauwolfia species. PROTOPLASMA 2017; 254:1813-1818. [PMID: 28120101 DOI: 10.1007/s00709-017-1079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.
Collapse
Affiliation(s)
- Cyrielle Corbin
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Florent Lafontaine
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Liuda Johana Sepúlveda
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia, Medellin, Colombia
| | - Ines Carqueijeiro
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Martine Courtois
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Thomas Dugé de Bernonville
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Sébastien Besseau
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Gaëlle Glévarec
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Nicolas Papon
- EA 3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Université d'Angers, Angers, France
| | - Lucia Atehortúa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia, Medellin, Colombia
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Marc Clastre
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Benoit St-Pierre
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Audrey Oudin
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Vincent Courdavault
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France.
| |
Collapse
|
19
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
20
|
Cázares-Flores P, Levac D, De Luca V. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:335-342. [PMID: 27122470 DOI: 10.1111/tpj.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina.
Collapse
Affiliation(s)
- Paulo Cázares-Flores
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada
| | - Dylan Levac
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada.
| |
Collapse
|
21
|
Carqueijeiro I, Masini E, Foureau E, Sepúlveda LJ, Marais E, Lanoue A, Besseau S, Papon N, Clastre M, Dugé de Bernonville T, Glévarec G, Atehortùa L, Oudin A, Courdavault V. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1242-6. [PMID: 26284695 DOI: 10.1111/plb.12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 05/15/2023]
Abstract
Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses.
Collapse
Affiliation(s)
- I Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Masini
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Foureau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L J Sepúlveda
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - E Marais
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - A Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - S Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - N Papon
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - M Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - T Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - G Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - A Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - V Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
22
|
Morikawa T, Harada S, Nishida A. Chiral Holmium Complex-Catalyzed Synthesis of Hydrocarbazole from Siloxyvinylindole and Its Application to the Enantioselective Total Synthesis of (−)-Minovincine. J Org Chem 2015; 80:8859-67. [DOI: 10.1021/acs.joc.5b01393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takahiro Morikawa
- Graduate
School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Shinji Harada
- Graduate
School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi Nishida
- Graduate
School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
23
|
Mizukami H. Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases. YAKUGAKU ZASSHI 2015; 135:867-82. [DOI: 10.1248/yakushi.15-00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hajime Mizukami
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
24
|
Dugé de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc'h N, St-Pierre B, Courdavault V. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. PHYTOCHEMISTRY 2015; 113:9-23. [PMID: 25146650 DOI: 10.1016/j.phytochem.2014.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 05/12/2023]
Abstract
The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
25
|
Abstract
The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host.
Collapse
|
26
|
Courdavault V, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:43-50. [PMID: 24727073 DOI: 10.1016/j.pbi.2014.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/12/2023]
Abstract
Environmental pressures forced plants to diversify specialized metabolisms to accumulate noxious molecules such as alkaloids constituting one of the largest classes of defense metabolites. Catharanthus roseus produces monoterpene indole alkaloids via a highly elaborated biosynthetic pathway whose characterization greatly progressed with the recent expansion of transcriptomic resources. The complex architecture of this pathway, sequentially distributed in at least four cell types and further compartmentalized into several organelles, involves partially identified inter-cellular and intra-cellular translocation events acting as potential key-regulators of metabolic fluxes. The description of this spatial organization and the inherent secretion and sequestration of metabolites not only provide new insight into alkaloid cell biology and its involvement in plant defense processes but also present new biotechnological challenges for synthetic biology.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
| |
Collapse
|
27
|
De Luca V, Salim V, Thamm A, Masada SA, Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:35-42. [PMID: 24709280 DOI: 10.1016/j.pbi.2014.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
Members of the Acanthaceae, Apocynaceae, Bignoniaceae, Caprifoliaceae, Gentianaceae, Labiatae, Lamiaceae, Loasaceae, Loganiaceae, Oleaceae, Plantaginaceae, Rubiaceae, Saxifragaceae, Scrophulariaceae, Valerianaceae, and Verbenaceae plant families are well known to accumulate thousands of bioactive iridoids/secoiridoids while the Apocynaceae, Loganiaceae and Rubiaceae families also accumulate thousands of bioactive monoterpenoid indole alkaloids (MIAs), mostly derived from the secologanin and tryptamine precursors. Several large-scale RNA-sequencing projects have greatly advanced the tools available for identifying candidate genes whose gene products are involved in the biosynthesis of iridoids/MIAs. This has led to the rapid comparative bioinformatics guided elucidation of several key remaining steps in secologanin biosynthesis as well as other steps in MIA biosynthesis. The availability of these tools will permit broad scale biochemical and molecular description of the reactions required for making thousands of iridoid/MIAs. This information will advance our understanding of the evolutionary and ecological roles played by these metabolites in Nature and the genes will be used for biotechnological production of useful iridoids/MIAs.
Collapse
Affiliation(s)
- Vincenzo De Luca
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| | - Vonny Salim
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada; Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, United States.
| | - Antje Thamm
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| | - Sayaka Atsumi Masada
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada; Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Fang Yu
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada; School of Biological Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, Liaoning 116034, China.
| |
Collapse
|
28
|
Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. PHYTOCHEMISTRY 2014; 101:23-31. [PMID: 24594312 DOI: 10.1016/j.phytochem.2014.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Brent Wiens
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Sayaka Masada-Atsumi
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Fang Yu
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
29
|
Salim V, Yu F, Altarejos J, De Luca V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:754-65. [PMID: 24103035 DOI: 10.1111/tpj.12330] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/24/2013] [Accepted: 09/09/2013] [Indexed: 05/23/2023]
Abstract
Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | | | | | | |
Collapse
|
30
|
Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. THE PLANT CELL 2013; 25:4123-34. [PMID: 24104568 PMCID: PMC3877786 DOI: 10.1105/tpc.113.115154] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/31/2013] [Accepted: 09/21/2013] [Indexed: 05/18/2023]
Abstract
Iridoids form a broad and versatile class of biologically active molecules found in thousands of plant species. In addition to the many hundreds of iridoids occurring in plants, some iridoids, such as secologanin, serve as key building blocks in the biosynthesis of thousands of monoterpene indole alkaloids (MIAs) and many quinoline alkaloids. This study describes the molecular cloning and functional characterization of three iridoid glucosyltransfeases (UDP-sugar glycosyltransferase6 [UGT6], UGT7, and UGT8) from Madagascar periwinkle (Catharanthus roseus) with remarkably different catalytic efficiencies. Biochemical analyses reveal that UGT8 possessed a high catalytic efficiency toward its exclusive iridoid substrate, 7-deoxyloganetic acid, making it better suited for the biosynthesis of iridoids in periwinkle than the other two iridoid glucosyltransfeases. The role of UGT8 in the fourth to last step in secologanin biosynthesis was confirmed by virus-induced gene silencing in periwinkle plants, which reduced expression of this gene and resulted in a large decline in secologanin and MIA accumulation within silenced plants. Localization studies of UGT8 using a carborundum abrasion method for RNA extraction show that its expression occurs preferentially within periwinkle leaves rather than in epidermal cells, and in situ hybridization studies confirm that UGT8 is preferentially expressed in internal phloem associated parenchyma cells of periwinkle species.
Collapse
Affiliation(s)
- Keisuke Asada
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-863, Japan
| | - Vonny Salim
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Sayaka Masada-Atsumi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-863, Japan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Elizabeth Edmunds
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Mai Nagatoshi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-863, Japan
| | - Kazuyoshi Terasaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-863, Japan
| | - Hajime Mizukami
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-863, Japan
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
- Address correspondence to
| |
Collapse
|