1
|
Fehér T, Széll N, Nagy I, Maróti Z, Kalmár T, Sohajda Z, Barboni MTS. Cone dysfunction in ARR3-mutation-associated early-onset high myopia: an electrophysiological study. Orphanet J Rare Dis 2024; 19:385. [PMID: 39420435 PMCID: PMC11488070 DOI: 10.1186/s13023-024-03390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Myopia-26, a Mendelian form of early-onset high-myopia (eoHM) caused by mutations in the X-chromosomal ARR3 gene and predominantly affecting females, curiously, may provide an alternative route of investigation to unveil retinal mechanisms underlying pathological eye growth. We conducted a case-control cross-sectional prospective electrophysiological study in genetically characterized Myopia-26 patients (ARR3 heterozygous symptomatic females) compared with high myopes harboring intact ARR3 alleles and one carrier hemizygous male. RESULTS Participants were 26 volunteers: 10 healthy control females (E-CTRL, mean age = 31.5 ± 8.8 years), one healthy control male, one carrier male of the mutant ARR3 allele and 14 female eoHM patients (mean age = 27.0 ± 13.1 years) divided in two groups: seven without (M-CTRL) and seven with (MYP-26) genetic alteration in the ARR3 gene. The clinical evaluation included complete eye screening and full-field electroretinograms (ERGs) recorded from both eyes under mydriasis. Spherical equivalent was comparable (mean=-9.55 ± 2.46 and - 10.25 ± 3.22 for M-CTRL and MYP-26, respectively) and best corrected visual acuity (BCVA) was significantly different between M-CTRL and MYP-26 (1.0 vs. 0.406 ± 0.253, respectively). E-CTRL and M-CTRL showed similar light-adapted flash and flicker ERG amplitudes; however, the prior values were reduced by ~ 35% (a- and b-waves alike), the latter by ~ 55% in the MYP-26 group (F(2, 45) > 21.821, p < 0.00001). Dark-adapted a-wave amplitudes were slightly reduced (by ~ 20%) in all myopic patients compared to E-CTRL, irrespective of the ARR3 genotype (E-CTRL vs. eoHM, p = 0.038). CONCLUSIONS The cone dysfunction observed in Myopia-26 patients is specifically linked to the mutation of ARR3, and is not the consequence of eoHM, i.e. elongation of the eye. It may play a role in myopic refractive error development through a yet unconfirmed pathomechanism.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Biochemistry, HUN-REN Biological Research Centre, 62 Temesvari krt., Szeged, H6726, Hungary.
| | - Noémi Széll
- Department of Ophthalmology, University of Debrecen, 98. Nagyerdei krt, Debrecen, H4032, Hungary
| | - István Nagy
- Institute of Biochemistry, HUN-REN Biological Research Centre, 62 Temesvari krt., Szeged, H6726, Hungary
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | - Zoltán Maróti
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, 35-37 Temesvari krt., Szeged, H6726, Hungary
| | - Tibor Kalmár
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, 35-37 Temesvari krt., Szeged, H6726, Hungary
| | - Zoltán Sohajda
- Department of Ophthalmology, University of Debrecen, 98. Nagyerdei krt, Debrecen, H4032, Hungary.
- Kenézy Campus Department of Ophthalmology, University of Debrecen, 2-26 Bartók Béla út, Debrecen, H4031, Hungary.
| | - Mirella T S Barboni
- Department of Ophthalmology, Semmelweis University, 39 Mária u, Budapest, H1085, Hungary.
| |
Collapse
|
2
|
Barboni MTS, Széll N, Sohajda Z, Fehér T. Pupillary Light Reflex Reveals Melanopsin System Alteration in the Background of Myopia-26, the Female Limited Form of Early-Onset High Myopia. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38958970 PMCID: PMC11223624 DOI: 10.1167/iovs.65.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose The purpose of this study was to evaluate pupillary light reflex (PLR) to chromatic flashes in patients with early-onset high-myopia (eoHM) without (myopic controls = M-CTRL) and with (female-limited myopia-26 = MYP-26) genetic mutations in the ARR3 gene encoding the cone arrestin. Methods Participants were 26 female subjects divided into 3 groups: emmetropic controls (E-CTRL, N = 12, mean age = 28.6 ± 7.8 years) and 2 myopic (M-CTRL, N = 7, mean age = 25.7 ± 11.5 years and MYP-26, N = 7, mean age = 28.3 ± 15.4 years) groups. In addition, one hemizygous carrier and one control male subject were examined. Direct PLRs were recorded after 10-minute dark adaptation. Stimuli were 1-second red (peak wavelength = 621 nm) and blue (peak wavelength = 470 nm) flashes at photopic luminance of 250 cd/m². A 2-minute interval between the flashes was introduced. Baseline pupil diameter (BPD), peak pupil constriction (PPC), and postillumination pupillary response (PIPR) were extracted from the PLR. Group comparisons were performed with ANOVAs. Results Dark-adapted BPD was comparable among the groups, whereas PPC to the red light was slightly reduced in patients with myopia (P = 0.02). PIPR at 6 seconds elicited by the blue flash was significantly weaker (P < 0.01) in female patients with MYP-26, whereas it was normal in the M-CTRL group and the asymptomatic male carrier. Conclusions L/M-cone abnormalities due to ARR3 gene mutation is currently claimed to underlie the pathological eye growth in MYP-26. Our results suggest that malfunction of the melanopsin system of intrinsically photosensitive retinal ganglion cells (ipRGCs) is specific to patients with symptomatic MYP-26, and may therefore play an additional role in the pathological eye growth of MYP-26.
Collapse
Affiliation(s)
| | - Noémi Széll
- Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Sohajda
- Kenézy Campus Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
3
|
Széll N, Fehér T, Maróti Z, Kalmár T, Latinovics D, Nagy I, Orosz ZZ, Janáky M, Facskó A, Sohajda Z. Myopia-26, the female-limited form of early-onset high myopia, occurring in a European family. Orphanet J Rare Dis 2021; 16:45. [PMID: 33482870 PMCID: PMC7825233 DOI: 10.1186/s13023-021-01673-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesis. Results We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. Conclusions This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.
Collapse
Affiliation(s)
- Noémi Széll
- Kenézy Gyula University Hospital, Debrecen Medical University, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| | - Zoltán Maróti
- Genetic Diagnostic Laboratory, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Genetic Diagnostic Laboratory, University of Szeged, Szeged, Hungary
| | | | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | - Zsuzsanna Z Orosz
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márta Janáky
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Andrea Facskó
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Sohajda
- Kenézy Gyula University Hospital, Debrecen Medical University, Debrecen, Hungary. .,Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Dinculescu A, Stupay RM, Deng WT, Dyka FM, Min SH, Boye SL, Chiodo VA, Abrahan CE, Zhu P, Li Q, Strettoi E, Novelli E, Nagel-Wolfrum K, Wolfrum U, Smith WC, Hauswirth WW. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS One 2016; 11:e0148874. [PMID: 26881841 PMCID: PMC4755610 DOI: 10.1371/journal.pone.0148874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
Collapse
Affiliation(s)
- Astra Dinculescu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Rachel M. Stupay
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Wen-Tao Deng
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Frank M. Dyka
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Seok-Hong Min
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Sanford L. Boye
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Vince A. Chiodo
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Carolina E. Abrahan
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Ping Zhu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Qiuhong Li
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | | | | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - W. Clay Smith
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | |
Collapse
|
5
|
Berkowitz BA, Gorgis J, Patel A, Baameur F, Gurevich VV, Craft CM, Kefalov VJ, Roberts R. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo. FASEB J 2014; 29:554-64. [PMID: 25351983 DOI: 10.1096/fj.14-254953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rod tetrameric arrestin 1 (tet-ARR1), stored in the outer nuclear layer/inner segments in the dark, modulates photoreceptor synaptic activity; light exposure stimulates a reduction via translocation to the outer segments for terminating G-protein coupled phototransduction signaling. Here, we test the hypothesis that intraretinal spin-lattice relaxation rate in the rotating frame (1/T1ρ), an endogenous MRI contrast mechanism, has high potential for evaluating rod tet-ARR1 and its reduction via translocation. Dark- and light-exposed mice (null for the ARR1 gene, overexpressing ARR1, diabetic, or wild type with or without treatment with Mn2+, a calcium channel probe) were studied using 1/T1ρ MRI. Immunohistochemistry and single-cell recordings of the retinas were also performed. In wild-type mice with or without treatment with Mn2+, 1/T1ρ of avascular outer retina (64% to 72% depth) was significantly (P < 0.05) greater in the dark than in the light; a significant (P < 0.05) but opposite pattern was noted in the inner retina (<50% depth). Light-evoked outer retina Δ1/T1ρ was absent in ARR1-null mice and supernormal in overexpressing mice. In diabetic mice, the outer retinal Δ1/T1ρ pattern suggested normal dark-to-light tet-ARR1 translocation and chromophore content, conclusions confirmed ex vivo. Light-stimulated Δ1/T1ρ in inner retina was linked to changes in blood volume. Our data support 1/T1ρ MRI for noninvasively assessing rod tet-ARR1 and its reduction via protein translocation, which can be combined with other metrics of retinal function in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology and Department of Ophthalmology, Wayne State University, Detroit, Michigan, USA;
| | | | | | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Cheryl M Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, and Department of Ophthalmology and Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA; and
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|