1
|
Xu X, Chen J, Liu S, Zhang DH. Differential Cross-Sections for the Vibrationally Excited H + HOD( vOH = 1-4) → H 2 + OD Reactions. J Phys Chem A 2024; 128:10395-10403. [PMID: 39565966 DOI: 10.1021/acs.jpca.4c06429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Using the time-dependent wave-packet approach, we calculate the first fully converged state-to-state differential cross-sections for the H + HOD(vOH = 1-4) → H2 + OD reactions on a highly accurate neural network PES. It is found that, unlike the loss of memory effect observed in the product distributions for low vibrational excitation reactions, high initial OH vibrational excitation significantly influences not only the product vibrational distribution but also the angular distribution. Furthermore, for the H + HOD(vOH = 3,4) reactions, the total integral cross-sections maintain the pronounced oscillatory structures in the J = 0 probabilities at low collision energies, which originate from the prereactive van der Waals resonances. Notably, the product angular distributions exhibit forward-backward peaked behavior at these energies, akin to those observed in the complex-forming system with deep potential wells. This is attributed to the much longer lifetimes of these resonances compared to those of conventional transition state resonances.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Abstract
The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Simon Yves
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Electrical Engineering, City College, The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
3
|
Porterfield JP, Bross DH, Ruscic B, Thorpe JH, Nguyen TL, Baraban JH, Stanton JF, Daily JW, Ellison GB. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate. J Phys Chem A 2017; 121:4658-4677. [PMID: 28517940 DOI: 10.1021/acs.jpca.7b02639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two methyl esters were examined as models for the pyrolysis of biofuels. Dilute samples (0.06-0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed microreactor were about 20 Torr and residence times through the reactors were roughly 25-150 μs. Reactor temperatures of 300-1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K, and the initial products are (CH2═C═O and CH3OH). As the microreactor is heated to 1300 K, a mixture of CH2═C═O and CH3OH, CH3, CH2═O, H, CO, and CO2 appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of CH3CH2CH═C═O and CH3OH. By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of CH3CH2CH═C═O, CH3OH, CH3, CH2═O, CO, CO2, CH3CH═CH2, CH2CHCH2, CH2═C═CH2, HCCCH2, CH2═C═C═O, CH2═CH2, HC≡CH, and CH2═C═O. On the basis of the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R-CH2-COOCH3. The lowest-energy fragmentation will be a 4-center elimination of methanol to form the ketene RCH═C═O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH2 + CO2 + CH3) and (RCH2 + CO + CH2═O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH2═C═O + CH2═O. The thermochemistry of methyl acetate and its fragmentation products were obtained via the Active Thermochemical Tables (ATcT) approach, resulting in ΔfH298(CH3COOCH3) = -98.7 ± 0.2 kcal mol-1, ΔfH298(CH3CO2) = -45.7 ± 0.3 kcal mol-1, and ΔfH298(COOCH3) = -38.3 ± 0.4 kcal mol-1.
Collapse
Affiliation(s)
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.,Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - James H Thorpe
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Thanh Lam Nguyen
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | | | - John F Stanton
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States.,Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | | | | |
Collapse
|
4
|
Yu D, Chen J, Cong S, Sun Z. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces. J Phys Chem A 2015; 119:12193-208. [DOI: 10.1021/acs.jpca.5b06153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dequan Yu
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jun Chen
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Shulin Cong
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhigang Sun
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Center
for Advanced Chemical Physics and 2011 Frontier Center for Quantum
Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People’s Republic of China
| |
Collapse
|
5
|
Bulut N, Kłos J, Roncero O. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction. J Chem Phys 2015; 142:214310. [PMID: 26049499 DOI: 10.1063/1.4922110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.
Collapse
Affiliation(s)
- Niyazi Bulut
- Department of Physics, Firat University, 23169 Elazig˜, Turkey
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
6
|
Kim JB, Weichman ML, Sjolander TF, Neumark DM, Kłos J, Alexander MH, Manolopoulos DE. Spectroscopic observation of resonances in the F + H
2
reaction. Science 2015; 349:510-3. [DOI: 10.1126/science.aac6939] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jongjin B. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David E. Manolopoulos
- Department of Chemistry, Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
7
|
Vilà A, González M, Mayol R. Quantum interferences in the photodissociation of Cl2(B) in superfluid helium nanodroplets (4He)N. Phys Chem Chem Phys 2015; 17:32241-50. [DOI: 10.1039/c5cp03575a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of quantum interferences theoretically found in the photodissociation of chlorine in superfluid 4He nanodroplets was investigated in detail.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Miguel González
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ricardo Mayol
- Departament d’Estructura i Constituents de la Matèria
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
8
|
Abstract
Modern computational methods have become so powerful for predicting the outcome for the H + H2 → H2 + H bimolecular exchange reaction that it might seem further experiments are not needed. Nevertheless, experiments have led the way to cause theorists to look more deeply into this simplest of all chemical reactions. The findings are less simple.
Collapse
|
9
|
Gamallo P, Huarte-Larrañaga F, González M. Resonances in the Ne + H2(+) → NeH(+) + H proton-transfer reaction. J Phys Chem A 2013; 117:5393-400. [PMID: 23746307 DOI: 10.1021/jp402400g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the oscillations found in the integral cross section of the title reaction, which are particularly evident for Ne + H2(+)(v0 = 2,j0 = 1) [essentially isoenergetic with NeH(+)(v' = 0,j' = 0) + H] at low collision energy (Ecol < 0.30 eV). We employed mainly an exact time-independent (TI) quantum dynamics method and used the best potential energy surface available. From analysis of TI initial state selected to all integral cross sections, state-to-state integral cross sections, and the corresponding differential cross sections (DCSs), we showed that the oscillations correspond to resonances. They arise from the influence of the global [Ne-H-H](+) (collinear) minimum on dynamics and probably correspond to Feshbach resonances. Besides, the forward-backward peaking DCS (which oscillates with Ecol) behavior observed could be a signature for this type of resonances. Finally, as most data on resonances in bimolecular reactions correspond to neutral systems, we hope that the present results will encourage experimentalists to re-examine this benchmark system.
Collapse
Affiliation(s)
- Pablo Gamallo
- Departament de Química Física and IQTC, Universitat de Barcelona , C/Martí i Franqués 1, 08028 Barcelona, Spain
| | | | | |
Collapse
|
10
|
Takahashi K, Hayes MY, Skodje RT. A study of resonance progressions in the F + HCl → Cl + HF reaction: A lifetime matrix analysis of pre-reactive and post-reactive collision complexes. J Chem Phys 2013; 138:024309. [DOI: 10.1063/1.4774057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Meng F, Yan W, Wang D. Quantum dynamics study of the Cl + CH4 → HCl + CH3 reaction: reactive resonance, vibrational excitation reactivity, and rate constants. Phys Chem Chem Phys 2012; 14:13656-62. [DOI: 10.1039/c2cp41917c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|