1
|
Assies L, Mercier V, López‐Andarias J, Roux A, Sakai N, Matile S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. Chembiochem 2022; 23:e202200192. [PMID: 35535626 PMCID: PMC9400975 DOI: 10.1002/cbic.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Labeled ammonium cations with pKa ∼7.4 accumulate in acidic organelles because they can be neutralized transiently to cross the membrane at cytosolic pH 7.2 but not at their internal pH<5.5. Retention in early endosomes with less acidic internal pH was achieved recently using weaker acids of up to pKa 9.8. We report here that primary ammonium cations with higher pKa 10.6, label early endosomes more efficiently. This maximized early endosome tracking coincides with increasing labeling of Golgi networks with similarly weak internal acidity. Guanidinium cations with pKa 13.5 cannot cross the plasma membrane in monomeric form and label the plasma membrane with selectivity for vesicles embarking into endocytosis. Self-assembled into micelles, guanidinium cations enter cells like arginine-rich cell-penetrating peptides and, driven by their membrane potential, penetrate mitochondria unidirectionally despite their high inner pH. The resulting tracking rules with an approximated dynamic range of pKa change ∼3.5 are expected to be generally valid, thus enabling the design of chemistry tools for biology research in the broadest sense. From a practical point of view, most relevant are two complementary fluorescent flipper probes that can be used to image the mechanics at the very beginning of endocytosis.
Collapse
Affiliation(s)
- Lea Assies
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Vincent Mercier
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Javier López‐Andarias
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Aurelien Roux
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
2
|
Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11:1013. [PMID: 33243969 PMCID: PMC7691519 DOI: 10.1038/s41419-020-03221-2] [Citation(s) in RCA: 508] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Collapse
|
3
|
Gulde R, Anliker S, Kohler HPE, Fenner K. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:52-60. [PMID: 29182849 DOI: 10.1021/acs.est.7b03556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Sabine Anliker
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich , 8057 Zürich, Switzerland
| |
Collapse
|
4
|
New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep 2017; 7:44277. [PMID: 28281674 PMCID: PMC5345070 DOI: 10.1038/srep44277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endo-lysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 μM, 5 μM). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 μM) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 μM), while changes in CD63 pattern already occurred at intermediate concentrations (5 μM). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs.
Collapse
|
5
|
Petibone DM, Majeed W, Casciano DA. Autophagy function and its relationship to pathology, clinical applications, drug metabolism and toxicity. J Appl Toxicol 2016; 37:23-37. [PMID: 27682190 DOI: 10.1002/jat.3393] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular process that facilitates nutrient turnover and removal of expended macromolecules and organelles to maintain homeostasis. The recycling of cytosolic macromolecules and damaged organelles by autophagosomes occurs through the lysosomal degradation pathway. Autophagy can also be upregulated as a prosurvival pathway in response to stress stimuli such as starvation, hypoxia or cell damage. Over the last two decades, there has been a surge in research revealing the basic molecular mechanisms of autophagy in mammalian cells. A corollary of an advanced understanding of autophagy has been a concurrent expansion of research into understanding autophagic function and dysfunction in pathology. Recent studies have revealed a pivotal role for autophagy in drug toxicity, and for utilizing autophagic components as diagnostic markers and therapeutic targets in treating disease and cancer. In this review, advances in understanding the molecular basis of mammalian autophagy, methods used to induce and evaluate autophagy, and the diverse interactions between autophagy and drug toxicity, disease progression and carcinogenesis are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dayton M Petibone
- National Center for Toxicological Research, US FDA, Division of Genetic and Molecular Toxicology, Jefferson, AR, 72079, USA
| | - Waqar Majeed
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Daniel A Casciano
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| |
Collapse
|
6
|
Parks A, Marceau F. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation. Toxicol Appl Pharmacol 2016; 305:55-65. [DOI: 10.1016/j.taap.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
|
7
|
Parks A, Charest-Morin X, Boivin-Welch M, Bouthillier J, Marceau F. Autophagic flux inhibition and lysosomogenesis ensuing cellular capture and retention of the cationic drug quinacrine in murine models. PeerJ 2015; 3:e1314. [PMID: 26500823 PMCID: PMC4614855 DOI: 10.7717/peerj.1314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 11/23/2022] Open
Abstract
The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM 9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H+ ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and −2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependent in vivo autophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular uptake of micromolar quinacrine at the plasma membrane level. As shown in vitro and in vivo, V-ATPase-mediated cation sequestration is associated, above a certain threshold, to autophagic flux inhibition and feed-back lysosomogenesis.
Collapse
Affiliation(s)
- Alexandre Parks
- Research Center CHU de Québec, Université Laval , Quebec City QC , Canada
| | | | | | | | - Francois Marceau
- Research Center CHU de Québec, Université Laval , Quebec City QC , Canada
| |
Collapse
|
8
|
Pierzyńska-Mach A, Janowski PA, Dobrucki JW. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A 2014; 85:729-37. [PMID: 24953340 DOI: 10.1002/cyto.a.22495] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 01/10/2023]
Abstract
Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis.
Collapse
Affiliation(s)
- Agnieszka Pierzyńska-Mach
- Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Cell Biophysics, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|