1
|
Wang Y, Nitta T, Hiratsuka Y, Morishima K. In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci Robot 2022; 7:eaba8212. [PMID: 36001686 DOI: 10.1126/scirobotics.aba8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microrobots have been developed for applications in the submillimeter domain such as the manipulation of micro-objects and microsurgery. Rapid progress has been achieved in developing miniaturized components for microrobotic systems, resulting in a variety of functional microactuators and soft components for creating untethered microrobots. Nevertheless, the integration of microcomponents, especially the assembly of actuators and mechanical components, is still time-consuming and has inherent restrictions, thus limiting efficient fabrications of microrobots and their potential applications. Here, we propose a method for fabricating microrobots in situ inspired by the construction of microsystems in living organisms. In a microfluidic chip, hydrogel mechanical components and artificial muscle actuators are successively photopatterned from hydrogel prepolymer and biomolecular motors, respectively, and integrated in situ into functional microrobots. The proposed method allows the fast fabrication of microrobots through simple operations and affordable materials while providing versatile functions through the precise spatiotemporal control of in situ integration and reconfiguration of artificial muscles. To validate the method, we fabricated microrobots to elicit different motions and on-chip robots with unique characteristics for microfluidic applications. This study may establish a new paradigm for microrobot integration and lead to the production of unique biohybrid microrobots with various advantages.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Nitta
- Applied Physics Course, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Adkins R, Kolvin I, You Z, Witthaus S, Marchetti MC, Dogic Z. Dynamics of active liquid interfaces. Science 2022; 377:768-772. [PMID: 35951710 DOI: 10.1126/science.abo5423] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controlling interfaces of phase-separating fluid mixtures is key to the creation of diverse functional soft materials. Traditionally, this is accomplished with surface-modifying chemical agents. Using experiment and theory, we studied how mechanical activity shapes soft interfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give rise to giant interfacial fluctuations and noninertial propagating active waves. At high activities, stresses disrupt interface continuity and drive droplet generation, producing an emulsion-like active state composed of finite-sized droplets. When in contact with a solid boundary, active interfaces exhibit nonequilibrium wetting transitions, in which the fluid climbs the wall against gravity. These results demonstrate the promise of mechanically driven interfaces for creating a new class of soft active matter.
Collapse
Affiliation(s)
- Raymond Adkins
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Itamar Kolvin
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zhihong You
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sven Witthaus
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.,Graduate program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.,Graduate program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:ijms23063157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
- Correspondence: ; Tel.: +39-347-920-6992
| |
Collapse
|
4
|
Havelka D, Zhernov I, Teplan M, Lánský Z, Chafai DE, Cifra M. Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network. Sci Rep 2022; 12:2462. [PMID: 35165315 PMCID: PMC8844285 DOI: 10.1038/s41598-022-06255-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Pulsed electric field (PEF) technology is promising for the manipulation of biomolecular components and has potential applications in biomedicine and bionanotechnology. Microtubules, nanoscopic tubular structures self-assembled from protein tubulin, serve as important components in basic cellular processes as well as in engineered biomolecular nanosystems. Recent studies in cell-based models have demonstrated that PEF affects the cytoskeleton, including microtubules. However, the direct effects of PEF on microtubules are not clear. In this work, we developed a lab-on-a-chip platform integrated with a total internal reflection fluorescence microscope system to elucidate the PEF effects on a microtubules network mimicking the cell-like density of microtubules. The designed platform enables the delivery of short (microsecond-scale), high-field-strength (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le$$\end{document}≤ 25 kV/cm) electric pulses far from the electrode/electrolyte interface. We showed that microsecond PEF is capable of overcoming the non-covalent microtubule bonding force to the substrate and translocating the microtubules. This microsecond PEF effect combined with macromolecular crowding led to aggregation of microtubules. Our results expand the toolbox of bioelectronics technologies and electromagnetic tools for the manipulation of biomolecular nanoscopic systems and contribute to the understanding of microsecond PEF effects on a microtubule cytoskeleton.
Collapse
|
5
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| |
Collapse
|
6
|
Nasirimarekani V, Strübing T, Vilfan A, Guido I. Tuning the Properties of Active Microtubule Networks by Depletion Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7919-7927. [PMID: 34132558 PMCID: PMC8264947 DOI: 10.1021/acs.langmuir.1c00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/05/2021] [Indexed: 05/12/2023]
Abstract
Suspensions of microtubules and nonadsorbing particles form thick and long bundles due to depletion forces. Such interactions act at the nanometer scale and define the structural and dynamical properties of the resulting networks. In this study, we analyze the depletion forces exerted by two types of nonadsorbing particles, namely, the polymer, poly(ethylene glycol) (PEG), and the block copolymer, Pluronic. We characterize their effects both in passive and active networks by adding motor proteins to the suspensions. By exploiting its bundling effect via entropic forces, we observed that PEG generates a network with thick structures showing a nematic order and larger mesh size. On the other hand, Pluronic builds up a much denser gel-like network without a recognizable mesh structure. This difference is also reflected in the network activity. PEG networks show moderate contraction in lateral directions while Pluronic networks exhibit faster and isotropic contraction. Interestingly, by mixing the two nonadsorbing polymers in different ratios, we observed that the system showed a behavior that exhibited properties of both agents, leading to a robust and fast responsive structure compared to the single-depletant networks. In conclusion, we show how passive osmotic compression modifies the distribution of biopolymers. Its combination with active motors results in a new active material with potential for nanotechnological applications.
Collapse
Affiliation(s)
- Vahid Nasirimarekani
- University
of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Tobias Strübing
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Strübing T, Khosravanizadeh A, Vilfan A, Bodenschatz E, Golestanian R, Guido I. Wrinkling Instability in 3D Active Nematics. NANO LETTERS 2020; 20:6281-6288. [PMID: 32786934 PMCID: PMC7496740 DOI: 10.1021/acs.nanolett.0c01546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Indexed: 05/13/2023]
Abstract
In nature, interactions between biopolymers and motor proteins give rise to biologically essential emergent behaviors. Besides cytoskeleton mechanics, active nematics arise from such interactions. Here we present a study on 3D active nematics made of microtubules, kinesin motors, and depleting agent. It shows a rich behavior evolving from a nematically ordered space-filling distribution of microtubule bundles toward a flattened and contracted 2D ribbon that undergoes a wrinkling instability and subsequently transitions into a 3D active turbulent state. The wrinkle wavelength is independent of the ATP concentration and our theoretical model describes its relation with the appearance time. We compare the experimental results with a numerical simulation that confirms the key role of kinesin motors in cross-linking and sliding the microtubules. Our results on the active contraction of the network and the independence of wrinkle wavelength on ATP concentration are important steps forward for the understanding of these 3D systems.
Collapse
Affiliation(s)
- Tobias Strübing
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Amir Khosravanizadeh
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Department
of Physics, Institute for Advanced Studies
in Basic Sciences, Zanjan 45137-66731, Iran
| | - Andrej Vilfan
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Eberhard Bodenschatz
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Institute
for Dynamics of Complex Systems, Georg-August-University
Göttingen, 37073 Göttingen, Germany
- Laboratory
of Atomic and Solid-State Physics, Cornell
University, Ithaca, New York 14853, United
States
| | - Ramin Golestanian
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf
Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Isabella Guido
- Max
Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| |
Collapse
|
8
|
Senoussi A, Kashida S, Voituriez R, Galas JC, Maitra A, Estevez-Torres A. Tunable corrugated patterns in an active nematic sheet. Proc Natl Acad Sci U S A 2019; 116:22464-22470. [PMID: 31611385 PMCID: PMC6842637 DOI: 10.1073/pnas.1912223116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Active matter locally converts chemical energy into mechanical work and, for this reason, it provides new mechanisms of pattern formation. In particular, active nematic fluids made of protein motors and filaments are far-from-equilibrium systems that may exhibit spontaneous motion, leading to actively driven spatiotemporally chaotic states in 2 and 3 dimensions and coherent flows in 3 dimensions (3D). Although these dynamic flows reveal a characteristic length scale resulting from the interplay between active forcing and passive restoring forces, the observation of static and large-scale spatial patterns in active nematic fluids has remained elusive. In this work, we demonstrate that a 3D solution of kinesin motors and microtubule filaments spontaneously forms a 2D free-standing nematic active sheet that actively buckles out of plane into a centimeter-sized periodic corrugated sheet that is stable for several days at low activity. Importantly, the nematic orientational field does not display topological defects in the corrugated state and the wavelength and stability of the corrugations are controlled by the motor concentration, in agreement with a hydrodynamic theory. At higher activities these patterns are transient and chaotic flows are observed at longer times. Our results underline the importance of both passive and active forces in shaping active matter and demonstrate that a spontaneously flowing active fluid can be sculpted into a static material through an active mechanism.
Collapse
Affiliation(s)
- Anis Senoussi
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Shunnichi Kashida
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Raphael Voituriez
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université and CNRS, F-75005 Paris, France
| | | | - Ananyo Maitra
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, F-75005 Paris, France;
| | | |
Collapse
|
9
|
Andorfer R, Alper JD. From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1553. [PMID: 30740918 PMCID: PMC6881777 DOI: 10.1002/wnan.1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Rachel Andorfer
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Joshua D. Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
- Eukaryotic Pathogen Innovations Center, Clemson University, Clemson, South Carolina
| |
Collapse
|
10
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| |
Collapse
|
11
|
Edozie B, Sahu S, Pitta M, Englert A, do Rosario CF, Ross JL. Self-organization of spindle-like microtubule structures. SOFT MATTER 2019; 15:4797-4807. [PMID: 31123741 DOI: 10.1039/c8sm01835a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microtubule self-organization is an essential physical process underlying several essential cellular functions, including cell division. In cell division, the dominant arrangement is the mitotic spindle, a football-shaped microtubule-based machine responsible for separating the chromosomes. We are interested in the underlying fundamental principles behind the self-organization of the spindle shape. Prior biological works have hypothesized that motor proteins control the proper formation of the spindle. Many of these motor proteins are also microtubule-crosslinkers, so it is unclear if the critical aspect is the motor activity or the crosslinking. In this study, we seek to address this question by examining the self-organization of microtubules using crosslinkers alone. We use a minimal system composed of tubulin, an antiparallel microtubule-crosslinking protein, and a crowding agent to explore the phase space of organizations as a function of tubulin and crosslinker concentration. We find that the concentration of the antiparallel crosslinker, MAP65, has a significant effect on the organization and resulted in spindle-like arrangements at relatively low concentration without the need for motor activity. Surprisingly, the length of the microtubules only moderately affects the equilibrium phase. We characterize both the shape and dynamics of these spindle-like organizations. We find that they are birefringent homogeneous tactoids. The microtubules have slow mobility, but the crosslinkers have fast mobility within the tactoids. These structures represent a first step in the recapitulation of self-organized spindles of microtubules that can be used as initial structures for further biophysical and active matter studies relevant to the biological process of cell division.
Collapse
Affiliation(s)
- Bianca Edozie
- Department of Physics, University of Massachusetts, 666 N. Pleasant St., Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Stanhope KT, Yadav V, Santangelo CD, Ross JL. Contractility in an extensile system. SOFT MATTER 2017; 13:4268-4277. [PMID: 28573293 DOI: 10.1039/c7sm00449d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Essentially all biology is active and dynamic. Biological entities autonomously sense, compute, and respond using energy-coupled ratchets that can produce force and do work. The cytoskeleton, along with its associated proteins and motors, is a canonical example of biological active matter, which is responsible for cargo transport, cell motility, division, and morphology. Prior work on cytoskeletal active matter systems showed either extensile or contractile dynamics. Here, we demonstrate a cytoskeletal system that can control the direction of the network dynamics to be either extensile, contractile, or static depending on the concentration of filaments or weak, transient crosslinkers through systematic variation of the crosslinker or microtubule concentrations. Based on these new observations and our previously published results, we created a simple one-dimensional model of the interaction of filaments within a bundle. Despite its simplicity, our model recapitulates the observed activities of our experimental system, implying that the dynamics of our finite networks of bundles are driven by the local filament-filament interactions within the bundle. Finally, we show that contractile phases can result in autonomously motile networks that resemble cells. Our results reveal a fundamentally important aspect of cellular self-organization: weak, transient interacting species can tune their interaction strength directly by tuning the local concentration to act like a rheostat. In this case, when the weak, transient proteins crosslink microtubules, they can tune the dynamics of the network to change from extensile to contractile to static. Our experiments and model allow us to gain a deeper understanding of cytoskeletal dynamics and provide an new understanding of the importance of weak, transient interactions to soft and biological systems.
Collapse
|
13
|
Welch D, Lettinga MP, Ripoll M, Dogic Z, Vliegenthart GA. Trains, tails and loops of partially adsorbed semi-flexible filaments. SOFT MATTER 2015; 11:7507-7514. [PMID: 26279011 DOI: 10.1039/c5sm01457c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer adsorption is a fundamental problem in statistical mechanics that has direct relevance to diverse disciplines ranging from biological lubrication to stability of colloidal suspensions. We combine experiments with computer simulations to investigate depletion induced adsorption of semi-flexible polymers onto a hard-wall. Three dimensional filament configurations of partially adsorbed F-actin polymers are visualized with total internal reflection fluorescence microscopy. This information is used to determine the location of the adsorption/desorption transition and extract the statistics of trains, tails and loops of partially adsorbed filament configurations. In contrast to long flexible filaments which primarily desorb by the formation of loops, the desorption of stiff, finite-sized filaments is largely driven by fluctuating filament tails. Simulations quantitatively reproduce our experimental data and allow us to extract universal laws that explain scaling of the adsorption-desorption transition with relevant microscopic parameters. Our results demonstrate how the adhesion strength, filament stiffness, length, as well as the configurational space accessible to the desorbed filament can be used to design the characteristics of filament adsorption and thus engineer properties of composite biopolymeric materials.
Collapse
Affiliation(s)
- David Welch
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
14
|
Henkin G, DeCamp SJ, Chen DTN, Sanchez T, Dogic Z. Tunable dynamics of microtubule-based active isotropic gels. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20140142. [PMID: 25332391 PMCID: PMC4223677 DOI: 10.1098/rsta.2014.0142] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigate the dynamics of an active gel of bundled microtubules (MTs) that is driven by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives the gel to a highly dynamical turbulent-like state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel. We characterize how enhanced transport and emergent macroscopic flows of active gels depend on relevant molecular parameters, including ATP, kinesin motor and depletant concentrations, MT volume fraction, as well as the stoichiometry of the constituent motor clusters. Our results show that the dynamical and structural properties of MT-based active gels are highly tunable. They also indicate existence of an optimal concentration of molecular motors that maximize far-from-equilibrium activity of active isotropic MT gels.
Collapse
Affiliation(s)
- Gil Henkin
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Stephen J DeCamp
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Daniel T N Chen
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Tim Sanchez
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02438, USA
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
15
|
De Magistris G, Tiribocchi A, Whitfield CA, Hawkins RJ, Cates ME, Marenduzzo D. Spontaneous motility of passive emulsion droplets in polar active gels. SOFT MATTER 2014; 10:7826-7837. [PMID: 25156695 DOI: 10.1039/c4sm00937a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations in the surrounding active medium.
Collapse
Affiliation(s)
- G De Magistris
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK.
| | | | | | | | | | | |
Collapse
|