1
|
Bhoopathi P, Mannangatti P, Pradhan AK, Kumar A, Maji S, Lang FF, Klibanov AL, Madan E, Cavenee WK, Keoprasert T, Sun D, Bjerkvig R, Thorsen F, Gogna R, Das SK, Emdad L, Fisher PB. Noninvasive therapy of brain cancer using a unique systemic delivery methodology with a cancer terminator virus. J Cell Physiol 2024; 239:e31302. [PMID: 38775127 DOI: 10.1002/jcp.31302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander L Klibanov
- Biomedical Engineering, Radiology and Medical Imaging, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of San Diego, La Jolla, California, USA
| | - Timothy Keoprasert
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Zhou J, Gao B, Zhang H, Yang R, Huang J, Li X, Zhong Y, Wang Y, Zhu X, Luo Y, Yan F. Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: A novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharm Sin B 2024; 14:1845-1863. [PMID: 38572112 PMCID: PMC10985128 DOI: 10.1016/j.apsb.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Lipid-coated perfluorocarbon nanodroplets (lp-NDs) hold great promise in bio-medicine as vehicles for drug delivery, molecular imaging and vaccine agents. However, their clinical utility is restricted by limited targeted accumulation, attributed to the innate immune system (IIS), which acts as the initial defense mechanism in humans. This study aimed to optimize lp-ND formulations to minimize non-specific clearance by the IIS. Ginsenosides (Gs), the principal components of Panax ginseng, possessing complement inhibition ability, structural similarity to cholesterol, and comparable fat solubility to phospholipids, were used as promising candidate IIS inhibitors. Two different types of ginsenoside-based lp-NDs (Gs lp-NDs) were created, and their efficacy in reducing IIS recognition was examined. The Gs lp-NDs were observed to inhibit the adsorption of C3 in the protein corona (PC) and the generation of SC5b-9. Adding Gs to lp-NDs reduced complement adsorption and phagocytosis, resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs. These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants, potentially reducing non-specific clearance by the IIS and improving lifespan.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binyang Gao
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Yang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Research Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Luo
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Yan
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers (Basel) 2022; 14:cancers14061497. [PMID: 35326649 PMCID: PMC8946048 DOI: 10.3390/cancers14061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The rat progression elevated gene-3 (PEG-3) promoter displays cancer-selective expression, whereas the rat growth arrest and DNA damage inducible gene-34 (GADD34) promoter lacks cancer specificity. PEG-3 and GADD34 minimal promoters display strong sequence homology except for two single point mutations. Since mutations are prevalent in many gene promoters resulting in significant alterations in promoter specificity and activity, we have explored the relevance of these two nucleotide alterations in determining cancer-selective gene expression. We demonstrate that these two point mutations are required to transform a non-cancer-specific promoter (pGADD) into a cancer-selective promoter (pGAPE). Additionally, we found GATA2 transcription factor binding sites in the GAPE-Prom, which regulates pGAPE activity selectively in cancer cells. This newly created pGAPE has all the necessary elements making it an appropriate genetic tool to noninvasively deliver imaging agents to follow tumor growth and progression to metastasis and for generating conditionally replicating adenoviruses that can express and deliver their payload exclusively in cancer. Abstract Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at −260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.
Collapse
|
4
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
5
|
Bhoopathi P, Pradhan AK, Maji S, Das SK, Emdad L, Fisher PB. Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers (Basel) 2021; 13:cancers13040857. [PMID: 33670594 PMCID: PMC7922065 DOI: 10.3390/cancers13040857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary An optimum cancer therapeutic virus should embody unique properties, including an ability to: Selectively procreate and kill tumor but not normal cells; produce a secreted therapeutic molecule (with broad-acting anti-cancer effects on primary and distant metastatic cells because of potent “bystander” activity); and monitor therapy non-invasively by imaging primary and distant metastatic cancers. We previously created a broad-spectrum, cancer-selective and replication competent therapeutic adenovirus that embodies two of these properties, i.e., specifically reproduces in cancer cells and produces a therapeutic cytokine, MDA-7/IL-24, a “cancer terminator virus” (CTV). We now expand on this concept and demonstrate the feasibility of producing a tripartite CTV (TCTV) selectively expressing three genes from three distinct promoters that replicate in the cancer cells while producing MDA-7/IL-24 and an imaging gene (i.e., luciferase). This novel first-in-class tripartite “theranostic” TCTV expands the utility of therapeutic viruses to non-invasively image and selectively destroy primary tumors and metastases. Abstract Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent “bystander” anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV “theranostic” adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This “theranostic” virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- Correspondence: (P.B.); (P.B.F.)
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Santanu Maji
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (P.B.); (P.B.F.)
| |
Collapse
|
6
|
Igarashi Y, Sasada T. Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res 2020; 2020:5825401. [PMID: 33282961 PMCID: PMC7685825 DOI: 10.1155/2020/5825401] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Until now, three types of well-recognized cancer treatments have been developed, i.e., surgery, chemotherapy, and radiotherapy; these either remove or directly attack the cancer cells. These treatments can cure cancer at earlier stages but are frequently ineffective for treating cancer in the advanced or recurrent stages. Basic and clinical research on the tumor microenvironment, which consists of cancerous, stromal, and immune cells, demonstrates the critical role of antitumor immunity in cancer development and progression. Cancer immunotherapies have been proposed as the fourth cancer treatment. In particular, clinical application of immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1/PD-L1 antibodies, in various cancer types represents a major breakthrough in cancer therapy. Nevertheless, accumulating data regarding immune checkpoint inhibitors demonstrate that these are not always effective but are instead only effective in limited cancer populations. Indeed, several issues remain to be solved to improve their clinical efficacy; these include low cancer cell antigenicity and poor infiltration and/or accumulation of immune cells in the cancer microenvironment. Therefore, to accelerate the further development of cancer immunotherapies, more studies are necessary. In this review, we will summarize the current status of cancer immunotherapies, especially cancer vaccines, and discuss the potential problems and solutions for the next breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuka Igarashi
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
- Kanagawa Cancer Center, Cancer Vaccine and Immunotherapy Center, Japan
| |
Collapse
|
7
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol 2020; 10:1786. [PMID: 33014876 PMCID: PMC7509414 DOI: 10.3389/fonc.2020.01786] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer has always been an enormous threat to human health and survival. Surgery, radiotherapy, and chemotherapy could improve the survival of cancer patients, but most patients with advanced cancer usually have a poor survival or could not afford the high cost of chemotherapy. The emergence of oncolytic viruses provided a new strategy for us to alleviate or even cure malignant tumors. An oncolytic virus can be described as a genetically engineered or naturally existing virus that can selectively replicate in cancer cells and then kill them without damaging the healthy cells. There have been many kinds of oncolytic viruses, such as herpes simplex virus, adenovirus, and Coxsackievirus. Moreover, they have different clinical applications in cancer treatment. This review focused on the clinical application of oncolytic virus and predicted the prospect by analyzing the advantages and disadvantages of oncolytic virotherapy.
Collapse
Affiliation(s)
- Guo-dong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-bo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Jiangsu Key Laboratory of Biological Cancer, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xudong Feng
- Department of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Peng-ping Li
- Department of General Surgery, The First People’s Hospital of Xiaoshan District, Hangzhou, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Menezes ME, Talukdar S, Wechman SL, Das SK, Emdad L, Sarkar D, Fisher PB. Prospects of Gene Therapy to Treat Melanoma. Adv Cancer Res 2019; 138:213-237. [PMID: 29551128 DOI: 10.1016/bs.acr.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of melanoma has continued to increase over the past 30 years. Hence, developing effective therapies to treat both primary and metastatic melanoma are essential. While advances in targeted therapy and immunotherapy have provided novel therapeutic options to treat melanoma, gene therapy may provide additional strategies for the treatment of metastatic melanoma clinically. This review focuses upon the challenges and opportunities that gene therapy provides for targeting melanoma. We begin with a discussion of the various gene therapy targets which are relevant to melanoma. Next, we explore the gene therapy clinical trials that have been conducted for treating melanoma. Finally, challenges faced in gene therapy as well as combination therapies for targeting melanoma, which may circumvent these obstacles, will be discussed. Targeted combination gene therapy strategies hold significant promise for developing the most effective therapeutic outcomes, while reducing the toxicity to noncancerous cells, and would integrate the patient's immune system to diminish melanoma progression. Next-generation vectors designed to embody required safety profiles and "theranostic" attributes, combined with immunotherapeutic strategies would be critical in achieving beneficial management and therapeutic outcomes in melanoma patients.
Collapse
Affiliation(s)
- Mitchell E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Sarmistha Talukdar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. Recombinant MDA-7/IL24 Suppresses Prostate Cancer Bone Metastasis through Downregulation of the Akt/Mcl-1 Pathway. Mol Cancer Ther 2018; 17:1951-1960. [PMID: 29934341 DOI: 10.1158/1535-7163.mct-17-1002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/23/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a principal cause of cancer-associated morbidity in men. Although 5-year survival of patients with localized prostate cancer approaches 100%, survival decreases precipitously after metastasis. Bone is the preferred site for disseminated prostate cancer cell colonization, altering the equilibrium of bone homeostasis resulting in weak and fragile bones. Currently, no curative options are available for prostate cancer bone metastasis. Melanoma differentiation associated gene-7 (MDA-7)/IL24 is a well-studied cytokine established as a therapeutic in a wide array of cancers upon delivery as a gene therapy. In this study, we explored the potential anticancer properties of MDA-7/IL24 delivered as a recombinant protein. Using bone metastasis experimental models, animals treated with recombinant MDA-7/IL24 had significantly less metastatic lesions in their femurs as compared with controls. The inhibitory effects of MDA-7/IL24 on bone metastasis resulted from prostate cancer-selective killing and inhibition of osteoclast differentiation, which is necessary for bone resorption. Gain- and loss-of-function genetic approaches document that prosurvival Akt and Mcl-1 pathways are critically important in the antibone metastatic activity of MDA-7/IL24. Our previous findings showed that MDA-7/IL24 gene therapy plus Mcl-1 inhibitors cooperate synergistically. Similarly, an Mcl-1 small-molecule inhibitor synergized with MDA-7/IL24 and induced robust antibone metastatic activity. These results expand the potential applications of MDA-7/IL24 as an anticancer molecule and demonstrate that purified recombinant protein is nontoxic in preclinical animal models and has profound inhibitory effects on bone metastasis, which can be enhanced further when combined with an Mcl-1 inhibitory small molecule. Mol Cancer Ther; 17(9); 1951-60. ©2018 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
11
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
12
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
13
|
Li S, Ou M, Wang G, Tang L. Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy. Appl Microbiol Biotechnol 2016; 100:8325-35. [DOI: 10.1007/s00253-016-7806-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023]
|
14
|
Bhoopathi P, Lee N, Pradhan AK, Shen XN, Das SK, Sarkar D, Emdad L, Fisher PB. mda-7/IL-24 Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM. Cancer Res 2016; 76:3572-82. [PMID: 27197168 DOI: 10.1158/0008-5472.can-15-2959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in preclinical animal models, and in a phase I clinical trial in patients with advanced cancers without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting endoplasmic reticulum stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival, and angiogenesis. To enhance cancer-selective expression and targeted anticancer activity of mda-7/IL-24, we created a tropism-modified cancer terminator virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24 We now show that Ad.5/3-CTV induces profound neuroblastoma antiproliferative activity and apoptosis in a caspase-3/9-independent manner, both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis-inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ-H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small-molecule inhibitors that attenuated PARP cleavage by inhibiting γ-H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM, and γ-H2AX. Cancer Res; 76(12); 3572-82. ©2016 AACR.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nathaniel Lee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Health Systems, Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
15
|
Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget 2016; 6:10712-27. [PMID: 25926554 PMCID: PMC4484414 DOI: 10.18632/oncotarget.3544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.
Collapse
|
16
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
17
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Sarkar S, Pradhan A, Das SK, Emdad L, Sarkar D, Pellecchia M, Fisher PB. Novel therapy of prostate cancer employing a combination of viral-based immunotherapy and a small molecule BH3 mimetic. Oncoimmunology 2015; 5:e1078059. [PMID: 27141334 DOI: 10.1080/2162402x.2015.1078059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022] Open
Abstract
Cancer-selective viral replication and delivery of a therapeutic immunomodulating, cancer-selective killing cytokine (mda-7/IL-24) by means of a new Cancer Terminator Virus (CTV) combined with a small molecule BH3 mimetic holds promise for treating both primary and metastatic hormone refractory prostate cancer (CaP).
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University , Richmond, VA, USA
| | - Anjan Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University , Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2014; 119:421-75. [PMID: 23870514 DOI: 10.1016/b978-0-12-407190-2.00007-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both preclinically and clinically. This review discusses therapeutic cancer vaccines from diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
20
|
MDA-7/IL-24: multifunctional cancer killing cytokine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:127-53. [PMID: 25001534 DOI: 10.1007/978-1-4471-6458-6_6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
First identified almost two decades ago as a novel gene differentially expressed in human melanoma cells induced to terminally differentiate, MDA-7/IL-24 has since shown great potential as an anti-cancer gene. MDA-7/IL24, a secreted protein of the IL-10 family, functions as a cytokine at normal physiological levels and is expressed in tissues of the immune system. At supra-physiological levels, MDA-7/IL-24 plays a prominent role in inhibiting tumor growth, invasion, metastasis and angiogenesis and was recently shown to target tumor stem/initiating cells for death. Much of the attention focused on MDA-7/IL-24 originated from the fact that it can selectively induce cell death in cancer cells without affecting normal cells. Thus, this gene originally shown to be associated with melanoma cell differentiation has now proven to be a multi-functional protein affecting a broad array of cancers. Moreover, MDA-7/IL-24 has proven efficacious in a Phase I/II clinical trial in humans with multiple advanced cancers. As research in the field progresses, we will unravel more of the functions of MDA-7/IL-24 and define novel ways to utilize MDA-7/IL-24 in the treatment of cancer.
Collapse
|
21
|
Azab BM, Dash R, Das SK, Bhutia SK, Sarkar S, Shen XN, Quinn BA, Dent P, Dmitriev IP, Wang XY, Curiel DT, Pellecchia M, Reed JC, Sarkar D, Fisher PB. Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol 2013; 229:34-43. [PMID: 23868767 DOI: 10.1002/jcp.24408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/14/2013] [Indexed: 12/27/2022]
Abstract
Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating PC. We previously constructed a CRCA, cancer terminator virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting.
Collapse
Affiliation(s)
- Belal M Azab
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 2013; 118:1-59. [PMID: 23768509 DOI: 10.1016/b978-0-12-407173-5.00002-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active-targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple-targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wendy S Vanden Berg-Foels
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuejun Wen
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Institute for Biomedical Engineering and Nanotechnology, Tongji University School of Medicine, Shanghai, China.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|