1
|
Canote CA, Kilyanek SM. Reactivity of metal dioxo complexes. Dalton Trans 2024; 53:4874-4889. [PMID: 38379444 DOI: 10.1039/d3dt04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes is discussed at length. Reactions are grouped by generic type, including addition across a metal oxo bond, oxygen atom transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation chemistry, and reductive transformations.
Collapse
Affiliation(s)
- Cody A Canote
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | - Stefan M Kilyanek
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Salonen P, Schachner JA, Peuronen A, Lahtinen M, Belaj F, Mösch-Zanetti NC, Lehtonen A. Amide functionalized aminobisphenolato MoO2 and WO2 complexes: Synthesis, characterization, and alkene epoxidation catalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
3
|
Bruno SM, Valente AA, Gonçalves IS, Pillinger M. Group 6 carbonyl complexes of N,O,P-ligands as precursors of high-valent metal-oxo catalysts for olefin epoxidation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Gomes DM, Silva AF, Gomes AC, Neves P, Valente AA, Gonçalves IS, Pillinger M. Pyrazine-bridged molybdenum(0) carbonyl and molybdenum(VI) oxide network solids as catalysts for epoxidation and sulfoxidation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Implication of oxidant activation on olefin epoxidation catalysed by Molybdenum catalysts with aroylhydrazonato ligands: Experimental and theoretical studies. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Synthesis and X-ray crystal structure of a Molybdenum(VI) Schiff base complex: Design of a new catalytic system for sustainable olefin epoxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Julião D, Gomes AC, Pillinger M, Lopes AD, Valença R, Ribeiro JC, Gonçalves IS, Balula SS. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Yan W, Liu M, Wang J, Shen J, Zhang S, Xu X, Wang S, Ding J, Jin X. Recent Advances in Facile Liquid Phase Epoxidation of Light Olefins over Heterogeneous Molybdenum Catalysts. CHEM REC 2019; 20:230-251. [PMID: 31441593 DOI: 10.1002/tcr.201900037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/18/2019] [Indexed: 12/29/2022]
Abstract
Molybdenum complexes are versatile and efficient for liquid phase olefin epoxidation reactions. Rational design of catalysts is critical to achieve high atom efficiency during epoxidation processes. Although liquid phase epoxidation has been a popular topic for decades, three key issues, (a) rational control of morphology of molybdenum nanoparticles, (b) manipulating metal-support interaction and (c) altering electronic configuration at molybdenum center remains unsolved in this area. Therefore, in this paper, we have critically revised recent research progress on heterogeneous molybdenum catalysts for facile liquid phase olefin epoxidation in terms of catalyst synthesis, surface characterization, catalytic performance and structure-function relationship. Furthermore, plausible reaction mechanisms will be systematically discussed with the aim to provide insights into fundamental understanding on novel epoxidation chemistry.
Collapse
Affiliation(s)
- Wenjuan Yan
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Mengyuan Liu
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jinyao Wang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Shuxia Zhang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xiaoqiang Xu
- Oil Production Group#2, Huabei Oil Field Company at PetroChina, Hebei Province, 065709, China
| | - Shuaishuai Wang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jie Ding
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xin Jin
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
10
|
Minyaev ME, Vinogradov AA, Churakov AV, Kimmich B, Nifant’ev IE, Nagy SM, Ivchenko PV. Half-sandwich molybdenum complexes: molecular structure and catalyst precursors for olefin epoxidation with tert-butyl hydroperoxide. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nogueira LS, Neves P, Gomes AC, Valente AA, Pillinger M, Gonçalves IS. Performance of a tetracarbonylmolybdenum(0) pyrazolylpyridine (pre)catalyst in olefin epoxidation and epoxide alcoholysis. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Martínez H, Cáceres MF, Martínez F, Páez-Mozo EA, Valange S, Castellanos NJ, Molina D, Barrault J, Arzoumanian H. Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Hu L, Chen H. Assessment of DFT Methods for Computing Activation Energies of Mo/W-Mediated Reactions. J Chem Theory Comput 2015; 11:4601-14. [DOI: 10.1021/acs.jctc.5b00373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lianrui Hu
- Beijing National Laboratory
for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory
for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Wang Z, Li S, Teo WJ, Poh YT, Zhao J, Hor TSA. Molybdenum (0) and tungsten (0) carbonyl N-heterocyclic carbene complexes as catalyst for olefin epoxidation. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|