1
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
2
|
Kristoffersen E, Coletta A, Lund L, Schiøtt B, Birkedal V. Inhibited complete folding of consecutive human telomeric G-quadruplexes. Nucleic Acids Res 2023; 51:1571-1582. [PMID: 36715345 PMCID: PMC9976873 DOI: 10.1093/nar/gkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.
Collapse
Affiliation(s)
- Emil Laust Kristoffersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Andrea Coletta
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|
3
|
Aznauryan M, Noer SL, Pedersen CW, Mergny JL, Teulade-Fichou MP, Birkedal V. Ligand Binding to Dynamically Populated G-Quadruplex DNA. Chembiochem 2021; 22:1811-1817. [PMID: 33450114 DOI: 10.1002/cbic.202000792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Several small-molecule ligands specifically bind and stabilize G-quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen-DC3 and a combination of single-molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre-folded G4 structures and that Phen-DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand-induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand-induced G4 folding and trapping of dynamically populated short-lived conformation states. Thus, ligand-induced stabilization does not necessarily require the initial presence of stably folded G4s.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.,Present address: Univ. Bordeaux, INSERM, CNRS ARNA, U1212, UMR 5320, IECB, 33600, Pessac, France
| | - Sofie Louise Noer
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Camilla W Pedersen
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), CNRS UMR7645, INSERM U1182, Ecole Polytechnique, 91128, Palaiseau Cedex, France.,Institute of Biophysics of the CAS, 61265, Brno, Czech Republic
| | - Marie-Paule Teulade-Fichou
- CMBC Laboratory (Chemistry and Modelling for the Biology of Cancer), Institut Curie, Research Center Orsay, CNRS UMR9187, INSERM U1196, Paris-Saclay University, Bât. 110, 91405, Orsay, France
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
4
|
Optimal Background Estimators in Single-Molecule FRET Microscopy. Biophys J 2017; 111:1278-1286. [PMID: 27653486 DOI: 10.1016/j.bpj.2016.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/21/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique.
Collapse
|
5
|
Aznauryan M, Søndergaard S, Noer SL, Schiøtt B, Birkedal V. A direct view of the complex multi-pathway folding of telomeric G-quadruplexes. Nucleic Acids Res 2016; 44:11024-11032. [PMID: 27799468 PMCID: PMC5159523 DOI: 10.1093/nar/gkw1010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023] Open
Abstract
G-quadruplexes (G4s) are DNA secondary structures that are capable of forming and function in vivo. The propensity of G4s to exhibit extreme polymorphism and complex dynamics is likely to influence their cellular function, yet a clear microscopic picture of their folding process is lacking. Here we employed single-molecule FRET microscopy to obtain a direct view of the folding and underlying conformational dynamics of G4s formed by the human telomeric sequence in potassium containing solutions. Our experiments allowed detecting several folded states that are populated in the course of G4 folding and determining their folding energetics and timescales. Combining the single-molecule data with molecular dynamics simulations enabled obtaining a structural description of the experimentally observed folded states. Our work thus provides a comprehensive thermodynamic and kinetic description of the folding of G4s that proceeds through a complex multi-route pathway, involving several marginally stable conformational states.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Siri Søndergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Sofie L Noer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark .,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Noer SL, Preus S, Gudnason D, Aznauryan M, Mergny JL, Birkedal V. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res 2015; 44:464-71. [PMID: 26615192 PMCID: PMC4705662 DOI: 10.1093/nar/gkv1320] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
G-quadruplex structures can occur throughout the genome, including at telomeres. They are involved in cellular regulation and are potential drug targets. Human telomeric G-quadruplex structures can fold into a number of different conformations and show large conformational diversity. To elucidate the different G-quadruplex conformations and their dynamics, we investigated telomeric G-quadruplex folding using single molecule FRET microscopy in conditions where it was previously believed to yield low structural heterogeneity. We observed four FRET states in Na+ buffers: an unfolded state and three G-quadruplex related states that can interconvert between each other. Several of these states were almost equally populated at low to medium salt concentrations. These observations appear surprising as previous studies reported primarily one G-quadruplex conformation in Na+ buffers. Our results permit, through the analysis of the dynamics of the different observed states, the identification of a more stable G-quadruplex conformation and two transient G-quadruplex states. Importantly these results offer a unique view into G-quadruplex topological heterogeneity and conformational dynamics.
Collapse
Affiliation(s)
- Sofie L Noer
- Interdisciplinary Nanoscience center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Søren Preus
- Interdisciplinary Nanoscience center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Daniel Gudnason
- Interdisciplinary Nanoscience center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Mikayel Aznauryan
- Interdisciplinary Nanoscience center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Lab, IECB, 33076 Bordeaux, France INSERM, U1212, IECB, 33607 Pessac, France
| | - Victoria Birkedal
- Interdisciplinary Nanoscience center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Ma L, Yang F, Zheng J. Application of fluorescence resonance energy transfer in protein studies. J Mol Struct 2014; 1077:87-100. [PMID: 25368432 DOI: 10.1016/j.molstruc.2013.12.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications.
Collapse
Affiliation(s)
- Linlin Ma
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fan Yang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
8
|
Tsukanov R, Tomov TE, Liber M, Berger Y, Nir E. Developing DNA nanotechnology using single-molecule fluorescence. Acc Chem Res 2014; 47:1789-98. [PMID: 24828396 DOI: 10.1021/ar500027d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and Holliday junctions and of the interactions of DNA strands with DNA origami and origami-related devices such as a DNA bipedal motor are provided. These examples demonstrate how SMF can be utilized for measurement of distances and conformational distributions and equilibrium and nonequilibrium kinetics, to monitor structural integrity and operation of DNA devices, and for isolation and investigation of minor subpopulations including malfunctioning and nonreactive devices. Utilization of a flow-cell to achieve measurements of dynamics with increased time resolution and for convenient and efficient operation of DNA devices is discussed briefly. We conclude by summarizing the various benefits provided by SMF for the development of DNA nanotechnology and suggest that the method can significantly assist in the design and manufacture and evaluation of operation of DNA devices.
Collapse
Affiliation(s)
- Roman Tsukanov
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Toma E. Tomov
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Miran Liber
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yaron Berger
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Eyal Nir
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
9
|
Hildebrandt LL, Preus S, Zhang Z, Voigt NV, Gothelf KV, Birkedal V. Single Molecule FRET Analysis of the 11 Discrete Steps of a DNA Actuator. J Am Chem Soc 2014; 136:8957-62. [DOI: 10.1021/ja502580t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lasse L. Hildebrandt
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
| | - Søren Preus
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
| | - Zhao Zhang
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Niels V. Voigt
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Kurt V. Gothelf
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Victoria Birkedal
- Interdisciplinary
Nanoscience center (iNANO) and Centre for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Single molecule FRET data analysis procedures for FRET efficiency determination: Probing the conformations of nucleic acid structures. Methods 2013; 64:36-42. [DOI: 10.1016/j.ymeth.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022] Open
|