1
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
2
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
3
|
Tuite MF. Yeast models of neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:351-379. [DOI: 10.1016/bs.pmbts.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Chernova TA, Kiktev DA, Romanyuk AV, Shanks JR, Laur O, Ali M, Ghosh A, Kim D, Yang Z, Mang M, Chernoff YO, Wilkinson KD. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress. Cell Rep 2017; 18:751-761. [PMID: 28099852 DOI: 10.1016/j.celrep.2016.12.082] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022] Open
Abstract
Self-perpetuating ordered protein aggregates (amyloids and prions) are associated with a variety of neurodegenerative disorders. Although environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. We have employed endogenous yeast prions as a model system to study environmental control of amyloid formation. A short-lived actin-associated yeast protein Lsb2 can trigger prion formation by other proteins in a mode regulated by the cytoskeleton and ubiquitin-dependent processes. Here, we show that such a heterologous prion induction is due to the ability of Lsb2 to form a transient prion state, generated in response to thermal stress. Evolutionary acquisition of prion-inducing activity by Lsb2 is traced to a single amino acid change, coinciding with the acquisition of thermotolerance in the Saccharomyces yeast lineage. This raises the intriguing possibility that the transient prion formation could aid in functioning of Lsb2 at higher temperatures.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Denis A Kiktev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA; Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andrey V Romanyuk
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - John R Shanks
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Oskar Laur
- Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, GA 30322, USA
| | - Moiez Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Abheek Ghosh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dami Kim
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhen Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maggie Mang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA; Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Abstract
The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.
Collapse
Affiliation(s)
- Jay Rasmussen
- a Department of Cellular Neurology , Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany.,c Graduate Training Center of Neuroscience, University of Tübingen , Tübingen , Germany
| | - Mathias Jucker
- a Department of Cellular Neurology , Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Lary C Walker
- d Department of Neurology and Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| |
Collapse
|
6
|
Abstract
Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices. We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.
Collapse
Affiliation(s)
- Tatiana A Chernova
- a Department of Biochemistry , Emory University School of Medicine , Atlanta , GA , USA
| | - Yury O Chernoff
- b School of Biological Sciences , Georgia Institute of Technology , Atlanta , GA , USA.,c Laboratory of Amyloid Biology and Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Keith D Wilkinson
- a Department of Biochemistry , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
7
|
Du Z, Zhang Y, Li L. The Yeast Prion [SWI(+)] Abolishes Multicellular Growth by Triggering Conformational Changes of Multiple Regulators Required for Flocculin Gene Expression. Cell Rep 2015; 13:2865-78. [PMID: 26711350 DOI: 10.1016/j.celrep.2015.11.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022] Open
Abstract
Although transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. Here, we show that the yeast prion [SWI(+)] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes and become inactivated in [SWI(+)] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI(+)] cells, which are SDS resistant, heritable, and curable, but become metastable after separation from [SWI(+)]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI(+)] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence distinct traits differently through multi-level regulations, providing insights into the biological roles of prions.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing 100044, China
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Yeast prions: Paramutation at the protein level? Semin Cell Dev Biol 2015; 44:51-61. [DOI: 10.1016/j.semcdb.2015.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
|
9
|
Abstract
The prion paradigm has emerged as a unifying molecular principle for the pathogenesis of many age-related neurodegenerative diseases. This paradigm holds that a fundamental cause of specific disorders is the misfolding and seeded aggregation of certain proteins. The concept arose from the discovery that devastating brain diseases called spongiform encephalopathies are transmissible to new hosts by agents consisting solely of a misfolded protein, now known as the prion protein. Accordingly, "prion" was defined as a "proteinaceous infectious particle." As the concept has expanded to include other diseases, many of which are not infectious by any conventional definition, the designation of prions as infectious agents has become problematic. We propose to define prions as "proteinaceous nucleating particles" to highlight the molecular action of the agents, lessen unwarranted apprehension about the transmissibility of noninfectious proteopathies, and promote the wider acceptance of this revolutionary paradigm by the biomedical community.
Collapse
|
10
|
Drozdova P, Rogoza T, Radchenko E, Lipaeva P, Mironova L. Transcriptional response to the [ISP(+) ] prion of Saccharomyces cerevisiae differs from that induced by the deletion of its structural gene, SFP1. FEMS Yeast Res 2014; 14:1160-70. [PMID: 25227157 DOI: 10.1111/1567-1364.12211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Currently, several protein-based genetic determinants, or prions, are described in yeast, and several hundred prion candidates have been predicted. Importantly, many known and potential prion proteins regulate transcription; therefore, prion induction should affect gene expression. While it is generally believed that the prion phenotype should mimic the deletion phenotype, this rule has exceptions. Formed by the transcription factor Sfp1p, [ISP(+) ] is one such exception as the [ISP(+) ] and sfp1Δ strains differ in many phenotypic traits. These data suggest that effects of prion formation by a transcription factor and its absence may affect gene expression in a different way. However, studies addressing this issue are practically absent. Here, we explore how [ISP(+) ] affects gene expression and how these changes correspond to the effect of SFP1 deletion. Our data indicate that the [ISP(+) ]-related expression changes cannot be explained by the inactivation of Sfp1p. Remarkably, most Sfp1p targets are not affected in the [ISP(+) ] strain; instead, the genes upregulated in the [ISP(+) ] strain are enriched in Gcn4p and Aft1p targets. We propose that Sfp1p serves as a part of a regulatory complex, and the activity of this complex may be modulated differently by the absence or prionization of Sfp1p.
Collapse
Affiliation(s)
- Polina Drozdova
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia; Laboratory of Amyloid Biology, Saint Petersburg State University, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|