1
|
Liu N, Qiang W, Jordan P, Marko JF, Qiao H. Cell-cycle and Age-Related Modulations of Mouse Chromosome Stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583771. [PMID: 38559262 PMCID: PMC10979861 DOI: 10.1101/2024.03.06.583771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chromosome structure is complex, and many aspects of its organization remain poorly understood. Measuring chromosome stiffness offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a ten-fold increase in stiffness (Young's modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, chromosomes from three meiosis-specific cohesin mutants exhibited stiffness comparable to that of wild-type chromosomes, indicating that these cohesins are not the primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase in chromosome stiffness in MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on oocyte chromosome stiffness and found that it led to a reduction in MI chromosome stiffness. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.
Collapse
Affiliation(s)
- Ning Liu
- University of Illinois Urbana-Champaign
| | | | | | | | | |
Collapse
|
2
|
Jalalizadeh M, Reis LO. Understanding bladder cancer by genome-wide association studies. Transl Androl Urol 2024; 13:363-365. [PMID: 38481859 PMCID: PMC10932636 DOI: 10.21037/tau-23-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/05/2024] [Indexed: 07/26/2024] Open
Affiliation(s)
- Mehrsa Jalalizadeh
- UNICAMP, the State University of Campinas, UroScience, School of Medical Sciences, Campinas, Sao Paulo, Brazil
| | - Leonardo Oliveira Reis
- UNICAMP, the State University of Campinas, UroScience, School of Medical Sciences, Campinas, Sao Paulo, Brazil
- Immuno-oncology, PUC-Campinas, the Pontifical Catholic University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
3
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
4
|
Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells 2020; 9:cells9122721. [PMID: 33371192 PMCID: PMC7767226 DOI: 10.3390/cells9122721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein–protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials.
Collapse
|
5
|
Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer MW. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes Dev 2020; 34:913-930. [PMID: 32499403 PMCID: PMC7328517 DOI: 10.1101/gad.335794.119] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.
Collapse
Affiliation(s)
- Hyeseon Kang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), Salk Institute for Biological Studies, 92037 La Jolla, California, USA
| | - Zhichao Xu
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Sahaana Chandran
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
6
|
Javasky E, Shamir I, Gandhi S, Egri S, Sandler O, Rothbart SB, Kaplan N, Jaffe JD, Goren A, Simon I. Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res 2018; 28:1455-1466. [PMID: 30166406 PMCID: PMC6169886 DOI: 10.1101/gr.230300.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
Abstract
Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown, and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin is probably achieved by "bookmarking," i.e., the retention of at least partial information during mitosis. To gain a deeper understanding of the contribution of histone modifications to the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches. We focused on key histone modifications and employed HeLa-S3 cells as a model system. Generally, in spite of the general hypoacetylation observed during mitosis, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, suggesting that the epigenomic landscape may serve as a component of the mitotic bookmarking process. Next, we investigated the nucleosome that enters nucleosome depleted regions (NDRs) during mitosis. We observed that in ∼60% of the NDRs, the entering nucleosome is distinct from the surrounding highly acetylated nucleosomes and appears to have either low levels of acetylation or high levels of phosphorylation in adjacent residues (since adjacent phosphorylation may interfere with the ability to detect acetylation). Inhibition of histone deacetylases (HDACs) by the small molecule TSA reverts this pattern, suggesting that these nucleosomes are specifically deacetylated during mitosis. Altogether, by merging multiple approaches, our study provides evidence to support a model where histone modifications may play a role in mitotic bookmarking and uncovers new insights into the deposition of nucleosomes during mitosis.
Collapse
Affiliation(s)
- Elisheva Javasky
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shashi Gandhi
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shawn Egri
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Oded Sandler
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 31096, Israel
| | - Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Alon Goren
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Chromatin proteins and RNA are associated with DNA during all phases of mitosis. Cell Discov 2016; 2:16038. [PMID: 27807477 PMCID: PMC5078801 DOI: 10.1038/celldisc.2016.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
Mitosis brings about major changes to chromosome and nuclear structure. We used recently developed proximity ligation assay-based techniques to investigate the association with DNA of chromatin-associated proteins and RNAs in Drosophila embryos during mitosis. All groups of tested proteins, histone-modifying and chromatin-remodeling proteins and methylated histones remained in close proximity to DNA during all phases of mitosis. We also found that RNA transcripts are associated with DNA during all stages of mitosis. Reduction of H3K27me3 levels or elimination of RNAs had no effect on the association of the components of PcG and TrxG complexes to DNA. Using a combination of proximity ligation assay-based techniques and super-resolution microscopy, we found that the number of protein-DNA and RNA-DNA foci undergoes significant reduction during mitosis, suggesting that mitosis may be accompanied by structural re-arrangement or compaction of specific chromatin domains.
Collapse
|
8
|
Pochukalina GN, Ilicheva NV, Podgornaya OI, Voronin AP. Nucleolus-like body of mouse oocytes contains lamin A and B and TRF2 but not actin and topo II. Mol Cytogenet 2016; 9:50. [PMID: 27347007 PMCID: PMC4921027 DOI: 10.1186/s13039-016-0259-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During the final stages of oocyte development, all chromosomes join in a limited nuclear volume for the final formation of a single complex chromatin structure - the karyosphere. In the majority of mammalian species, the chromosomes surround a round protein/fibrillar body known as the central body, or nucleolus-like body (NLB). Nothing seems to unite the inner portion of the karyosphere with the nucleolus except position at its remnants. Nevertheless, in this study we will use term NLB as the conventional one for karyosphere with the central body. At the morphological level, NLBs consist of tightly-packed fibres of 6-10 nm. The biochemical structure of this dense, compact NLB fibre centre remains uncertain. RESULTS The aim of this study was to determine which proteins represent the NLB components at final stages of karyosphere formation in mouse oogenesis. To determine this, three antibodies (ABs) have been examined against different actin epitopes. Examination of both ABs against the actin N-end provided similar results: spots inside the nucleus. Double staining with AB against SC35 and actin revealed the colocalization of these proteins in IGCs (interchromatin granule clusters/nuclear speckles/SC35 domains). In contrast, examination of polyclonal AB against peptide at the C-end reveals a different result: actin is localized exclusively in connection with the chromatin. Surprisingly, no forms of actin or topoisomerase II are present as components of the NLB. It was discovered that: (1) lamin B is an NLB component from the beginning of NLB formation, and a major portion of it resides in the NLB at the end of oocyte development; (2) lamin A undergoes rapid movement into the NLB, and a majority of it remains in the NLB; (3) the telomere-binding protein TRF2 resides in the IGCs/nuclear speckles until the end of oocyte development, when significant part of it transfers to the NLB. CONCLUSIONS NLBs do not contain actin or topo II. Lamin B is involved from the beginning of NLB formation. Both Lamin A and TRF2 exhibit rapid movement to the NLB at the end of oogenesis. This dynamic distribution of proteins may reflect the NLB's role in future chromatin organization post-fertilisation.
Collapse
Affiliation(s)
| | - Nadya V. Ilicheva
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
| | - Olga I. Podgornaya
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
- />Saint Petersburg State University, St Petersburg, 199034 Russia
- />Far Eastern Federal University, Vladivostok, 690950 Russia
| | - Alexey P. Voronin
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
- />Saint Petersburg State University, St Petersburg, 199034 Russia
| |
Collapse
|
9
|
Meng Y, Yi X, Li X, Hu C, Wang J, Bai L, Czajkowsky DM, Shao Z. The non-coding RNA composition of the mitotic chromosome by 5'-tag sequencing. Nucleic Acids Res 2016; 44:4934-46. [PMID: 27016738 PMCID: PMC4889943 DOI: 10.1093/nar/gkw195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022] Open
Abstract
Mitotic chromosomes are one of the most commonly recognized sub-cellular structures in eukaryotic cells. Yet basic information necessary to understand their structure and assembly, such as their composition, is still lacking. Recent proteomic studies have begun to fill this void, identifying hundreds of RNA-binding proteins bound to mitotic chromosomes. However, by contrast, there are only two RNA species (U3 snRNA and rRNA) that are known to be associated with the mitotic chromosome, suggesting that there are many mitotic chromosome-associated RNAs (mCARs) not yet identified. Here, using a targeted protocol based on 5'-tag sequencing to profile the mammalian mCAR population, we report the identification of 1279 mCARs, the majority of which are ncRNAs, including lncRNAs that exhibit greater conservation across 60 vertebrate species than the entire population of lncRNAs. There is also a significant enrichment of snoRNAs and specific SINE RNAs. Finally, ∼40% of the mCARs are presently unannotated, many of which are as abundant as the annotated mCARs, suggesting that there are also many novel ncRNAs in the mCARs. Overall, the mCARs identified here, together with the previous proteomic and genomic data, constitute the first comprehensive catalogue of the molecular composition of the eukaryotic mitotic chromosomes.
Collapse
Affiliation(s)
- Yicong Meng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Xinhui Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ling Bai
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes & Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Verheyen T, Görnemann J, Verbinnen I, Boens S, Beullens M, Van Eynde A, Bollen M. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits. Nucleic Acids Res 2015; 43:5771-84. [PMID: 25990731 PMCID: PMC4499128 DOI: 10.1093/nar/gkv500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits.
Collapse
Affiliation(s)
- Toon Verheyen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Janina Görnemann
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Shannah Boens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Nikalayevich E, Ohkura H. The NuRD nucleosome remodelling complex and NHK-1 kinase are required for chromosome condensation in oocytes. J Cell Sci 2015; 128:566-75. [PMID: 25501812 PMCID: PMC4311133 DOI: 10.1242/jcs.158477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
Abstract
Chromosome condensation during cell division is one of the most dramatic events in the cell cycle. Condensin and topoisomerase II are the most studied factors in chromosome condensation. However, their inactivation leads to only mild defects and little is known about the roles of other factors. Here, we took advantage of Drosophilaoocytes to elucidate the roles of potential condensation factors by performing RNA interference (RNAi). Consistent with previous studies, depletion of condensin I subunits or topoisomerase II in oocytes only mildly affected chromosome condensation. In contrast, we found severe undercondensation of chromosomes after depletion of the Mi-2-containing NuRD nucleosome remodelling complex or the protein kinase NHK-1 (also known as Ballchen in Drosophila). The further phenotypic analysis suggests that Mi-2 and NHK-1 are involved in different pathways of chromosome condensation. We show that the main role of NHK-1 in chromosome condensation is to phosphorylate Barrier-to-autointegration factor (BAF) and suppress its activity in linking chromosomes to nuclear envelope proteins. We further show that NHK-1 is important for chromosome condensation during mitosis as well as in oocytes.
Collapse
Affiliation(s)
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
12
|
Khan WA, Rogan PK, Knoll JHM. Localized, non-random differences in chromatin accessibility between homologous metaphase chromosomes. Mol Cytogenet 2014; 7:70. [PMID: 25520753 PMCID: PMC4269072 DOI: 10.1186/s13039-014-0070-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Condensation differences along the lengths of homologous, mitotic metaphase chromosomes are well known. This study reports molecular cytogenetic data showing quantifiable localized differences in condensation between homologs that are related to differences in accessibility (DA) of associated DNA probe targets. Reproducible DA was observed for ~10% of locus-specific, short (1.5-5 kb) single copy DNA probes used in fluorescence in situ hybridization. RESULTS Fourteen probes (from chromosomes 1, 5, 9, 11, 15, 17, 22) targeting genic and intergenic regions were developed and hybridized to cells from 10 individuals with cytogenetically-distinguishable homologs. Differences in hybridization between homologs were non-random for 8 genomic regions (RGS7, CACNA1B, GABRA5, SNRPN, HERC2, PMP22:IVS3, ADORA2B:IVS1, ACR) and were not unique to known imprinted domains or specific chromosomes. DNA probes within CCNB1, C9orf66, ADORA2B:Promoter-Ex1, PMP22:IVS4-Ex 5, and intergenic region 1p36.3 showed no DA (equivalent accessibility), while OPCML showed unbiased DA. To pinpoint probe locations, we performed 3D-structured illumination microscopy (3D-SIM). This showed that genomic regions with DA had 3.3-fold greater volumetric, integrated probe intensities and broad distributions of probe depths along axial and lateral axes of the 2 homologs, compared to a low copy probe target (NOMO1) with equivalent accessibility. Genomic regions with equivalent accessibility were also enriched for epigenetic marks of open interphase chromatin (DNase I HS, H3K27Ac, H3K4me1) to a greater extent than regions with DA. CONCLUSIONS This study provides evidence that DA is non-random and reproducible; it is locus specific, but not unique to known imprinted regions or specific chromosomes. Non-random DA was also shown to be heritable within a 2 generation family. DNA probe volume and depth measurements of hybridized metaphase chromosomes further show locus-specific chromatin accessibility differences by super-resolution 3D-SIM. Based on these data and the analysis of interphase epigenetic marks of genomic intervals with DA, we conclude that there are localized differences in compaction of homologs during mitotic metaphase and that these differences may arise during or preceding metaphase chromosome compaction. Our results suggest new directions for locus-specific structural analysis of metaphase chromosomes, motivated by the potential relationship of these findings to underlying epigenetic changes established during interphase.
Collapse
Affiliation(s)
- Wahab A Khan
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| | - Peter K Rogan
- />Departments of Biochemistry and Computer Science, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| | - Joan HM Knoll
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| |
Collapse
|
13
|
Hsiung CCS, Morrissey CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung MH, Hardison RC, Blobel GA. Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res 2014; 25:213-25. [PMID: 25373146 PMCID: PMC4315295 DOI: 10.1101/gr.180646.114] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements.
Collapse
Affiliation(s)
- Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christapher S Morrissey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maheshi Udugama
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Christopher L Frank
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina 27708, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|