1
|
Yuan A, Fong H, Nguyen JV, Nguyen S, Norman P, Cullum R, Fenical W, Debnath A. High-Throughput Screen of Microbial Metabolites Identifies F 1F O ATP Synthase Inhibitors as New Leads for Naegleria fowleri Infection. ACS Infect Dis 2023; 9:2622-2631. [PMID: 37943251 DOI: 10.1021/acsinfecdis.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Primary amebic meningoencephalitis (PAM), a brain infection caused by a free-living ameba Naegleria fowleri, leads to an extensive inflammation of the brain and death within 1-18 (median 5) days after symptoms begin. Although natural products have played a significant role in the development of drugs for over a century, research focusing on identifying new natural product-based anti-N. fowleri agents is limited. We undertook a large-scale ATP bioluminescence-based screen of about 10,000 unique marine microbial metabolite mixtures against the trophozoites of N. fowleri. Our screen identified about 100 test materials with >90% inhibition at 50 μg/mL and a dose-response study found 20 of these active test materials exhibiting an EC50 ranging from 0.2 to 2 μg/mL. Examination of four of these potent metabolite mixtures, derived from our actinomycete strains CNT671, CNT756, and CNH301, resulted in the isolation of a pure metabolite identified as oligomycin D. Oligomycin D exhibited nanomolar potency on multiple genotypes of N. fowleri, and it was five- or 850-times more potent than the recommended drugs amphotericin B or miltefosine. Oligomycin D is fast-acting and reached its EC50 in 10 h, and it was also able to inhibit the invasiveness of N. fowleri significantly when tested on a matrigel invasion assay. Since oligomycin is known to manifest inhibitory activity against F1FO ATP synthase, we tested different F1FO ATP synthase inhibitors and identified a natural peptide leucinostatin as a fast-acting amebicidal compound with nanomolar potency on multiple strains.
Collapse
Affiliation(s)
- Alice Yuan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Hayley Fong
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jennifer V Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sophia Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Payton Norman
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Hamoda AM, Hamdy R, Fayed B, Abouleish M, Sulaiman A, Hamad M, Soliman SSM. Evolutionary relevance of metabolite production in relation to marine sponge bacteria symbiont. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12649-3. [PMID: 37358811 DOI: 10.1007/s00253-023-12649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Sponges are habitats for a diverse community of microorganisms. Sponges provide shelter, whereas microbes provide a complementary defensive mechanism. Here, a symbiotic bacterium, identified as Bacillus spp., was isolated from a marine sponge following culture enrichment. Fermentation-assisted metabolomics using thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) indicated that marine simulated nutrition and temperature was the optimum in metabolite production represented by the highest number of metabolites and the diverse chemical classes when compared to other culture media. Following large-scale culture in potato dextrose broth (PDB) and dereplication, compound M1 was isolated and identified as octadecyl-1-(2',6'-di-tert-butyl-1'-hydroxyphenyl) propionate. M1, at screening concentrations up to 10 mg/ml, showed no activity against prokaryotic bacteria including Staphylococcus aureus and Escherichia coli, while 1 mg/ml of M1 was sufficient to cause a significant killing effect on eukaryotic cells including Candida albicans, Candida auris, and Rhizopus delemar fungi and different mammalian cells. M1 exhibited MIC50 0.97 ± 0.006 and 7.667 ± 0.079 mg/ml against C. albicans and C. auris, respectively. Like fatty acid esters, we hypothesize that M1 is stored in a less harmful form and upon pathogenic attack is hydrolyzed to a more active form as a defensive metabolite. Subsequently, [3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid] (DTBPA), the hydrolysis product of M1, exhibited ~ 8-fold and 18-fold more antifungal activity than M1 against C. albicans and C. auris, respectively. These findings indicated the selectivity of that compound as a defensive metabolite towards the eukaryotic cells particularly the fungi, a major infectious agent to sponges. Metabolomic-assisted fermentation can provide a significant understanding of a triple marine-evolved interaction. KEY POINTS: • Bacillus species, closely related to uncultured Bacillus, is isolated from Gulf marine sponge • Metabolomic-assisted fermentations showed diverse metabolites • An ester with a killing effect against eukaryotes but not prokaryotes is isolated.
Collapse
Affiliation(s)
- Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut-71526, Egypt
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ashna Sulaiman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Mohamad Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
4
|
Protein-Based 3D Biofabrication of Biomaterials. Bioengineering (Basel) 2021; 8:bioengineering8040048. [PMID: 33923425 PMCID: PMC8073780 DOI: 10.3390/bioengineering8040048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Protein/peptide-based hydrogel biomaterial inks with the ability to incorporate various cells and mimic the extracellular matrix's function are promising candidates for 3D printing and biomaterials engineering. This is because proteins contain multiple functional groups as reactive sites for enzymatic, chemical modification or physical gelation or cross-linking, which is essential for the filament formation and printing processes in general. The primary mechanism in the protein gelation process is the unfolding of its native structure and its aggregation into a gel network. This network is then stabilized through both noncovalent and covalent cross-link. Diverse proteins and polypeptides can be obtained from humans, animals, or plants or can be synthetically engineered. In this review, we describe the major proteins that have been used for 3D printing, highlight their physicochemical properties in relation to 3D printing and their various tissue engineering application are discussed.
Collapse
|
5
|
Corallincola spongiicola sp. nov., isolated from sponge. Antonie van Leeuwenhoek 2019; 113:643-650. [PMID: 31823138 DOI: 10.1007/s10482-019-01371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/02/2019] [Indexed: 11/27/2022]
Abstract
A gram-negative, motile, strictly aerobic, and rod-shaped bacterium designated 176GS2-150T was isolated from the sponge Hymeniacidon sinapium. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 176GS2-150T grew well at 25 °C on marine agar. Based on its 16S rRNA gene sequence, we showed that strain 176GS2-150T belongs to the family Psychromonadaceae and class Gammaproteobacteria and is related to Corallincola platygyrae JLT2006T (96.84% sequence similarity). The G + C content of the genomic DNA was 49.0 mol%. The assembled draft genome of strain 176GS2-150T was 4.2 Mbp and consisted of 14 contigs. The major respiratory quinone was Q-8, and the major fatty acids were summed feature 3 (comprising C16 :1ω6c and/or C16:1ω7c), summed feature 8 (comprising C18 :1ω7c and/or C18:1ω6c), C17:0 iso, C16:0, and C15:0 iso. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, 3 unidentified phospholipids, and 1 unidentified polar lipid. On the basis of the genotypic and phenotypic characteristics, strain 176GS2-150T can be placed as a new species within the genus Corallincola; the name Corallincola spongiicola sp. nov. has been proposed, with type strain 176GS2-150T (= KACC 19890T = LMG 31317T).
Collapse
|
6
|
Zarezin DP, Shmatova OI, Kabylda AM, Nenajdenko VG. Efficient Synthesis of the Peptide Fragment of the Natural Depsipeptides Jaspamide and Chondramide. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Danil P. Zarezin
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Olga I. Shmatova
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Adil M. Kabylda
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | | |
Collapse
|
7
|
Abstract
A crude methanolic extract of the Indonesian sponge Clathria bulbotoxa showed a potent cytotoxic activity against the human epidermoid carcinoma A431 cells. An investigation of the active components led to the isolation of three new compounds named crambescidins 345 (1), 361 (2), and 373 (3), together with the known related metabolites crambescidins 359 (4), 657 (5), and 800 (6). The structures of the compounds were determined by spectroscopic analysis. These compounds 1–4 that possess a simple pentacyclic guanidine core exhibited moderate cytotoxicity against the A431 cells with the IC50 values of 7.0, 2.5, 0.94, and 3.1 μM, respectively, while the known compounds 5 and 6 that possess a long aliphatic side chain were found to be significantly cytotoxic. On the other hand, in an anti-oomycete activity test against the fungus-like plant pathogen Phytophthora capsici, 1–4 showed a higher activity than that of 5 and 6, suggesting that the long aliphatic side chain plays a significant role for cytotoxicity, but is not effective or suppressive for anti-oomycete activity.
Collapse
|
8
|
Gardères J, Bourguet-Kondracki ML, Hamer B, Batel R, Schröder HC, Müller WEG. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential. Mar Drugs 2015; 13:5059-101. [PMID: 26262628 PMCID: PMC4557014 DOI: 10.3390/md13085059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| |
Collapse
|
9
|
Passarini MRZ, Miqueletto PB, de Oliveira VM, Sette LD. Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum. J Basic Microbiol 2014; 55:207-20. [PMID: 25213208 DOI: 10.1002/jobm.201400466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Abstract
The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples.
Collapse
Affiliation(s)
- Michel R Z Passarini
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas-CPQBA, Universidade Estadual de Campinas-UNICAMP, Rua Alexandre Cazelatto, Paulínia, SP, Brazil
| | | | | | | |
Collapse
|