1
|
Turhan E, Pötzl C, Keil W, Negroni M, Kouřil K, Meier B, Romero JA, Kazimierczuk K, Goldberga I, Azaïs T, Kurzbach D. Biphasic NMR of Hyperpolarized Suspensions-Real-Time Monitoring of Solute-to-Solid Conversion to Watch Materials Grow. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19591-19598. [PMID: 37817917 PMCID: PMC10561236 DOI: 10.1021/acs.jpcc.3c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Indexed: 10/12/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Christopher Pötzl
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Waldemar Keil
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Mattia Negroni
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| | - Javier Agustin Romero
- Centre
of New Technologies, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland
| | | | - Ieva Goldberga
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Dennis Kurzbach
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| |
Collapse
|
2
|
Weber EMM, Kress T, Abergel D, Sewsurn S, Azaïs T, Kurzbach D. Assessing the Onset of Calcium Phosphate Nucleation by Hyperpolarized Real-Time NMR. Anal Chem 2020; 92:7666-7673. [PMID: 32378878 PMCID: PMC7271075 DOI: 10.1021/acs.analchem.0c00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We
report an experimental approach for high-resolution real-time
monitoring of transiently formed species occurring during the onset
of precipitation of ionic solids from solution. This is made possible
by real-time nuclear magnetic resonance (NMR) monitoring using dissolution
dynamic nuclear polarization (D-DNP) to amplify signals of functional
intermediates and is supported by turbidimetry, cryogenic electron
microscopy, and solid-state NMR measurements. D-DNP can provide drastic
signal improvements in NMR signal amplitudes, permitting dramatic
reductions in acquisition times and thereby enabling us to probe fast
interaction kinetics such as those underlying formation of prenucleation
species (PNS) that precede solid–liquid phase separation. This
experimental strategy allows for investigation of the formation of
calcium phosphate (CaP)-based minerals by 31P NMR—a
process of substantial industrial, geological, and biological interest.
Thus far, many aspects of the mechanisms of CaP nucleation remain
unclear due to the absence of experimental methods capable of accessing
such processes on sufficiently short time scales. The approach reported
here aims to address this by an improved characterization of the initial
steps of CaP precipitation, permitting detection of PNS by NMR and
determination of their formation rates, exchange dynamics, and sizes.
Using D-DNP monitoring, we find that under our conditions (i) in the
first 2 s after preparation of oversaturated calcium phosphate solutions,
PNS with a hydrodynamic radius of Rh ≈
1 nm is formed and (ii) following this rapid initial formation, the
entire crystallization processes proceed on considerably longer time
scales, requiring >20 s to form the final crystal phase.
Collapse
Affiliation(s)
- Emmanuelle M M Weber
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, 201 Welch Road, Stanford, California 94305, United States
| | - Thomas Kress
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Abergel
- Laboratoire des biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Steffi Sewsurn
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensèe de Paris (LCMCP), 4, place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensèe de Paris (LCMCP), 4, place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
3
|
Quan BD, Sone ED. The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues. J R Soc Interface 2018; 15:rsif.2018.0269. [PMID: 30333243 DOI: 10.1098/rsif.2018.0269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Formation of hydroxyapatite (HAP) within collagen fibrils, as found in bone, dentine and cementum, is thought to be mediated by proteins rich in aspartate (Asp) and glutamate such as osteopontin and bone sialoprotein, respectively. Indeed polyaspartate (pAsp), a homopolymer analogue of such proteins, has been shown to induce intrafibrillar mineralization of collagen from solutions of calcium and phosphate that are supersaturated with respect to HAP. To elucidate the role of pAsp in mineralization of collagen, we explored the effect of pAsp chain length on in vitro HAP deposition in demineralized mouse periodontal tissue sections. Through characterization of both tissue sections and mineralizing solution, we show that chain length contributes to the effectiveness of pAsp in mediating intrafibrillar mineralization. This function appears to be associated with inhibition of otherwise kinetically favoured crystallization in the bulk solution, which allows for intrafibrillar crystallization, though this does not preclude the possibility of a more active role for pAsp in addition. Inhibition of crystallization in solution by pAsp occurs by slowing the growth of amorphous calcium phosphate and stabilization of this phase, rather than by sequestration of Ca2+ ions. These results suggest that the length of Asp-rich sequences of mineralizing proteins may be essential to their function, and could also be useful in optimization of mineralized tissue replacement synthesis.
Collapse
Affiliation(s)
- Bryan D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eli D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada .,Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|