1
|
Kim W, Kim K, Kim J, Lee Z. In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy. Appl Microsc 2024; 54:7. [PMID: 39284998 PMCID: PMC11405595 DOI: 10.1186/s42649-024-00100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.
Collapse
Affiliation(s)
- Wonjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangsik Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jaejin Kim
- Shell International Exploration & Production, Inc, Shell Technology Center Houston, 3333 Hwy 6 S, Houston, TX, 77082-3101, USA
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Chitriv SP, Saini V, Ratna D, P VR. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121881. [PMID: 39018861 DOI: 10.1016/j.jenvman.2024.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Coal ash containing significant amount of SiO2 and Al2O3 is utilized as a catalyst substrate for carbon nanotubes (CNTs) synthesis. Three different types of catalysts were made by impregnating coal ash with cobalt, iron, and nickel. These catalysts were used to produce CNTs through pyrolysis of waste polypropylene followed by chemical vapor deposition. The influence of catalyst type and reaction temperature (700, 800 and 900 °C) on CNTs yield and its quality was studied in detail. The produced CNTs were characterized by thermogravimetric analysis (TGA), Raman scattering and electron microscopes (FESEM and HRTEM). The TGA results revealed that the Ni catalyst produced CNTs with highest yield (266 %) compared to those synthesized over and Fe (96 %) and Co (95 %). However, the yield of the CNTs from all three metal impregnated coal ash based catalysts was found to have decreased with increase in reaction temperature. The thermal stability of CNTs obtained over different catalysts followed the order of Fe (570 °C) > Ni (550 °C) > Co (530 °C). Further, the Raman analysis demonstrated that the produced CNTs over different catalysts showed increasing degree of graphitization with the rise in reaction temperature. Additionally, the ID/IG ratios indicated that CNTs produced from Fe catalyst showed highest degree of graphitization followed by Co and Ni. FESEM and HRTEM analysis showed that the coal ash based catalysts produced multiwalled CNTs and the diameter of the CNTs was increasing with the rise in catalysis temperature. Therefore, co-utilization of coal ash and waste plastic for production of high value CNTs can be a sustainable approach to waste management while actively contributing in circular economy.
Collapse
Affiliation(s)
- Shubham P Chitriv
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Vageesh Saini
- Amity School of Engineering and Technology, Amity University, Jaipur, 303002, India
| | - Debarshi Ratna
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Vijayakumar R P
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| |
Collapse
|
3
|
Qi Y, Li B, Xiu FR, Sun Y, Gao X. Low-cost and sensitive chemiluminescence detection of phthalates in environment by signal sensing of carbon-based materials from PVC/coal gangue dechlorination. Anal Chim Acta 2024; 1314:342803. [PMID: 38876516 DOI: 10.1016/j.aca.2024.342803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The detection of plasticizers in the environment is important to prevent environmental risks and people's health hazards. Improving recycling efficiency of waste PVC still faced challenges. RESULTS In this work, it was found that solid products from waste PVC/coal gangue dechlorination in subcritical water (dPVC) had strong catalysis activity for luminol-H2O2 chemiluminescence (CL) reaction. Phthalates, common plasticizers, could bond and adsorb on dPVC, which greatly inhibited the luminol-H2O2-dPVC CL reaction. Based on this, a low-cost CL analysis was constructed for the detection of phthalates combinations (PACs) and di-(2-ethylhexyl) phthalate (DEHP) in the environment. The detection limit for PACs and DEHP was 0.048 ng/L and 0.13 ng/L, respectively. Compared with HPLC standard method, the dPVC CL analysis had accuracy and reliability for the detection of phthalates in actual environmental samples. Besides, the results of life cycle assessment (LCA) revealed that dPVC for CL sensing materials had significantly small global warming potential (GWP). SIGNIFICANCE The use of dPVC for CL sensing not only improved the recycling efficiency of PVC, but also reduced carbon emissions of obtaining CL sensing materials.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Bingjie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yiwen Sun
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
4
|
Yang Y, Miao C, Wang R, Zhang R, Li X, Wang J, Wang X, Yao J. Advances in morphology-controlled alumina and its supported Pd catalysts: synthesis and applications. Chem Soc Rev 2024; 53:5014-5053. [PMID: 38600823 DOI: 10.1039/d3cs00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.
Collapse
Affiliation(s)
- Yanpeng Yang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Chenglin Miao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Ruoyu Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Rongxin Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xiaoyu Li
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Jieguang Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 51031, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China.
| |
Collapse
|
5
|
Bayles A, Fabiano CJ, Shi C, Yuan L, Yuan Y, Craft N, Jacobson CR, Dhindsa P, Ogundare A, Mendez Camacho Y, Chen B, Robatjazi H, Han Y, Strouse GF, Nordlander P, Everitt HO, Halas NJ. Tailoring the aluminum nanocrystal surface oxide for all-aluminum-based antenna-reactor plasmonic photocatalysts. Proc Natl Acad Sci U S A 2024; 121:e2321852121. [PMID: 38442156 PMCID: PMC10945844 DOI: 10.1073/pnas.2321852121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Aluminum nanocrystals (AlNCs) are of increasing interest as sustainable, earth-abundant nanoparticles for visible wavelength plasmonics and as versatile nanoantennas for energy-efficient plasmonic photocatalysis. Here, we show that annealing AlNCs under various gases and thermal conditions induces substantial, systematic changes in their surface oxide, modifying crystalline phase, surface morphology, density, and defect type and concentration. Tailoring the surface oxide properties enables AlNCs to function as all-aluminum-based antenna-reactor plasmonic photocatalysts, with the modified surface oxides providing varying reactivities and selectivities for several chemical reactions.
Collapse
Affiliation(s)
- Aaron Bayles
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | | | - Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
| | - Lin Yuan
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Yigao Yuan
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Nolan Craft
- Department of Physics & Astronomy, Rice University, Houston, TX77005
| | - Christian R. Jacobson
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Parmeet Dhindsa
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Adebola Ogundare
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
| | - Yelsin Mendez Camacho
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
| | - Banghao Chen
- Department of Chemistry, Florida State University, Tallahassee, FL32306
| | | | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
| | | | - Peter Nordlander
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Physics & Astronomy, Rice University, Houston, TX77005
| | - Henry O. Everitt
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Physics & Astronomy, Rice University, Houston, TX77005
- Department of Electrical and Computer Engineering, Rice University, Houston, TX77005
- Army Development Command Army Research Laboratory-South, Rice University, Houston, TX77005
| | - Naomi J. Halas
- Department of Chemistry, Rice University, Houston, TX77005
- Laboratory for Nanophotonics, Rice University, Houston, TX77005
- Department of Physics & Astronomy, Rice University, Houston, TX77005
- Department of Electrical and Computer Engineering, Rice University, Houston, TX77005
| |
Collapse
|
6
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
7
|
Jawad A. The effects of Fe, Mg, and Pt-doping on the improvement of Ni stabilized on Al 2O 3-CeO 3 catalysts for methane dry reforming. RSC Adv 2023; 13:33129-33145. [PMID: 37954415 PMCID: PMC10634349 DOI: 10.1039/d3ra04809h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Herein, the promotional effects of Mg, Fe, and Pt on Ni-based catalysts supported on Al2O3-CeO2 (Ni/Al2O3-CeO2) were investigated in the dry reforming of methane (DRM) reaction. The interaction of a suitable amount of MgO and FeO with Ce2O3 stabilized in the catalysts was demonstrated by the temperature-programmed desorption of CO2 (CO2-TPD). Ce2O3 has a high basicity for adsorbing CO2, generating a monoclinic Ce2O2CO3 species in the DRM reaction. Surface oxygen ions were also produced by adding MgO and FeO, as demonstrated by the temperature-programmed reduction of H2 (H2-TPR). Monoclinic Ce2O2CO3 and surface oxygen may both be used to oxidize and remove the carbon that was deposited, maintaining the high activity and stability of the metal Ni and Pt catalysts. The high dispersion and synergistic interactions between the platinum and oxide phases, which are associated with the decrease in reduction temperature and the rise in the number of basic sites, are responsible for the increased activity of Pt with M-Ni/Al2O3-CeO2 catalysts. The co-doped Ni/Al2O3-CeO2 catalysts with Mg and Fe significantly enhanced the activity (more than 80% methane and 84% CO2 conversion), the selectivity toward syngas (∼90%), and maintained the H2/CO ratio at about 0.97 at 700 °C.
Collapse
Affiliation(s)
- Abbas Jawad
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology 1101 N. State Street Rolla Missouri 65409 USA
- Midland Refineries Company MRC, AL Daura Refinery Company, Services Energy Board Baghdad Iraq
| |
Collapse
|
8
|
Gramatte S, Jeurgens LPH, Politano O, Simon Greminger JA, Baras F, Xomalis A, Turlo V. Atomistic Simulations of the Crystalline-to-Amorphous Transformation of γ-Al 2O 3 Nanoparticles: Delicate Interplay between Lattice Distortions, Stresses, and Space Charges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6301-6315. [PMID: 37097742 DOI: 10.1021/acs.langmuir.2c03292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The size-dependent phase stability of γ-Al2O3 was studied by large-scale molecular dynamics simulations over a wide temperature range from 300 to 900 K. For the γ-Al2O3 crystal, a bulk transformation to α-Al2O3 by an FCC-to-HCP transition of the O sublattice is still kinetically hindered at 900 K. However, local distortions of the FCC O-sublattice by the formation of quasi-octahedral Al local coordination spheres become thermally activated, as driven by the partial covalency of the Al-O bond. On the contrary, spherical γ-Al2O3 nanoparticles (NPs) (with sizes of 6 and 10 nm) undergo a crystalline-to-amorphous transformation at 900 K, which starts at the reconstructed surface and propagates into the core through collective displacements of anions and cations, resulting in the formation of 7- and 8-fold local coordination spheres of Al. In parallel, the reconstructed Al-enriched surface is separated from the stoichiometric core by a diffuse Al-depleted transition region. This compositional heterogeneity creates an imbalance of charges inside the NP, which induces a net attractive Coulombic force that is strong enough to reverse the initial stress state in the NP core from compressive to tensile. These findings disclose the delicate interplay between lattice distortions, stresses, and space-charge regions in oxide nanosystems. A fundamental explanation for the reported expansion of metal-oxide NPs with decreasing size is provided, which has significant implications for, e.g., heterogeneous catalysis, NP sintering, and additive manufacturing of NP-reinforced metal matrix composites.
Collapse
Affiliation(s)
- Simon Gramatte
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Laboratory for Joining Technologies and Corrosion, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Lars P H Jeurgens
- Laboratory for Joining Technologies and Corrosion, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | - Olivier Politano
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Jose Antonio Simon Greminger
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Florence Baras
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Angelos Xomalis
- Laboratory for Mechanics of Materials and Nanostructures, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Vladyslav Turlo
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
9
|
Fischer AF, Iglesia E. The Nature of “Hydrogen Spillover”: Site Proximity Effects and Gaseous Intermediates in Hydrogenation Reactions Mediated by Inhibitor-Scavenging Mechanisms. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Mawby LM, Ludwig B, Lear BJ. 27Al Solid-State Magic-Angle Spinning NMR Studies of Aluminum Powder Particle Surfaces Treated with a Methyltriethoxysilane Coupling Agent under Acidic Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10810-10816. [PMID: 36007149 DOI: 10.1021/acs.langmuir.2c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on the reaction between methyltriethoxysilane (MTES) and micrometer-sized aluminum particles, facilitated by HCl. This reaction ultimately produces silane-coated aluminum particles. Using 27Al magic-angle spinning solid-state nuclear magnetic resonance, we find that aluminum powder starts with a mixture of tetrahedrally, pentahedrally, and octahedrally coordinated aluminum, with the pentahedral species dominating. In the presence of HCl, however, the aluminum undergoes a restructuring, so that octahedrally coordinated aluminum is the dominant species. Using diffuse reflectance infrared spectroscopy to confirm the deposition of silane, we find that this restructuring of the aluminum in the presence of HCl is both a sufficient and necessary condition for the deposition of the silane.
Collapse
Affiliation(s)
- Lillian M Mawby
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bellamarie Ludwig
- Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Chavez-Esquivel G, García-Martínez JC, Cervantes-Cuevas H, Acosta D, Vera-Ramírez MA. Effect of thermo-alkali treatment on the morphological and electrochemical properties of biopolymer electrolytes based on corn starch–Al(OH)3. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Nazimov DA, Klimov OV, Saiko AV, Noskov AS. Effect of Steam–Air Treatment of Alumina–Chromia Dehydrogenation Catalysts on Their Physicochemical and Catalytic Characteristics. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Kubota H, Mine S, Toyao T, Maeno Z, Shimizu KI. Redox-Driven Reversible Structural Evolution of Isolated Silver Atoms Anchored to Specific Sites on γ-Al2O3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Akhmetov V, Feofanov M, Sharapa DI, Amsharov K. Alumina-Mediated π-Activation of Alkynes. J Am Chem Soc 2021; 143:15420-15426. [PMID: 34499504 DOI: 10.1021/jacs.1c07845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ability to induce powerful atom-economic transformation of alkynes is the key feature of carbophilic π-Lewis acids such as gold- and platinum-based catalysts. The unique catalytic activity of these compounds in electrophilic activations of alkynes is explained through relativistic effects, enabling efficient orbital overlapping with π-systems. For this reason, it is believed that noble metals are indispensable components in the catalysis of such reactions. In this study, we report that thermally activated γ-Al2O3 activates enynes, diynes, and arene-ynes in a manner enabling reactions that were typically assigned to the softest π-Lewis acids, while some were known to be triggered exclusively by gold catalysts. We demonstrate the scope of these transformations and suggest a qualitative explanation of this phenomenon based on the Dewar-Chatt-Duncanson model confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Vladimir Akhmetov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.,Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
| | - Mikhail Feofanov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.,Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
| | - Dmitry I Sharapa
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Konstantin Amsharov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
15
|
Xiao Y, Han L, Zhang L, Gates BC, Yang D. Pair Sites on Nodes of Metal-Organic Framework hcp UiO-66 Catalyze tert-Butyl Alcohol Dehydration. J Phys Chem Lett 2021; 12:6085-6089. [PMID: 34170689 DOI: 10.1021/acs.jpclett.1c01574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On metal oxide cluster nodes of metal-organic frameworks (MOFs), sites not bonded to linkers (e.g., defects and structural vacancies) control reactivity and catalysis. Attention has been focused on isolated, individual sites, but pair sites have been largely overlooked. We now show that the MOF hcp UiO-66, which incorporates dimeric Zr6O8 nodes bridged by μ2-OH groups, is an excellent platform for identifying and controlling adjacent sites consisting of OH groups and Zr4+ sites, which catalyze tert-butyl alcohol dehydration much more rapidly than isolated single sites.
Collapse
Affiliation(s)
- Yue Xiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Lu Han
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Lixiong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Dong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| |
Collapse
|
16
|
Hongloi N, Prapainainar P, Prapainainar C. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111696] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Yang D, Gates BC. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks. Acc Chem Res 2021; 54:1982-1991. [PMID: 33843190 DOI: 10.1021/acs.accounts.1c00029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusMetal-organic frameworks (MOFs) are a huge, rapidly growing class of crystalline, porous materials that consist of inorganic nodes linked by organic struts. Offering the advantages of thermal stability combined with high densities of accessible reactive sites, some MOFs are good candidate materials for applications in catalysis and separations. Such MOFs include those with nodes that are metal oxide clusters (e.g., Zr6O8, Hf6O8, and Zr12O22) and long rods (e.g., [Al(OH)]n). These nanostructured metal oxides are often compared with bulk metal oxides, but they are in essence different because their structures are not the same and because the MOFs have a high degree of uniformity, offering the prospect of a deep understanding of reactivity that is barely attainable for most bulk metal oxides because of their surface heterogeneity. This prospect is being realized as it has become evident that adventitious components on MOF node surfaces, besides the linkers, are crucial. These ligands arise from modulators, solvents, or products of solvent decomposition in MOF synthesis solutions, and because they are minor components that are often irregularly placed on defects, they may not show up in X-ray diffraction (XRD) crystal structures. Hydroxyl groups on the nodes (like those on bulk metal oxides) are regarded as native functional groups arising from solvent water, but they may barely be present initially, with common ligands instead being formate and acetate formed from modulators formic acid and acetic acid. (Formate also arises from the decomposition of dimethylformamide (DMF) solvent.) Replacement and control of the node ligands is facilitated by postsynthesis reactions (e.g., with alcohols or aqueous HCl/H2SO4 solutions) or as a result of high-temperature decomposition. In catalysis, adventitious node ligands can be (a) reaction inhibitors that block active sites on the nodes (e.g., formate blocking Zr, Hf, or Al Lewis acid sites); (b) reaction intermediates (e.g., ethoxy in ethanol dehydration); or (c) active sites themselves (e.g., terminal OH groups in tert-butyl alcohol (TBA) dehydration). Surprisingly, in view of the catalytic importance of such ligands on bulk metal oxides, their subtle chemistry on MOF nodes is only recently being determined. We describe (1) methods for identifying and quantifying node ligands (especially by IR spectroscopy and by 1H NMR spectroscopy of MOFs digested in NaOH/D2O solutions); (2) node ligand surface chemistry expressed as reaction networks; (3) catalysis, with mechanisms and energetics determined by density functional theory (DFT) and spectroscopy; and (4) MOF unzipping by reactions of linker carboxylate ligands with reactants such as alcohols that break node-linker bonds, a cause of catalyst deactivation and also an indicator of node-linker bond strength and MOF stability.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
18
|
Marchewka J, Jeleń P, Rutkowska I, Bezkosty P, Sitarz M. Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials. MATERIALS 2021; 14:ma14061340. [PMID: 33802120 PMCID: PMC8002036 DOI: 10.3390/ma14061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The aim of this work was to synthesize porous ceramic materials from the SiOC system by the sol-gel method and the subsequent pyrolysis. The usage of two types of precursors (siloxanes) was determined by Si/C ratio in starting materials. It allows us to control the size of the pores and specific surface area, which are crucial for the potential applications of the final product after thermal processing. Methyltrimethoxysilane and dimethyldiethoxysilane were mixed in three different molar ratios: 4:1, 2:1, and 1:1 to emphasize Si/C ratio impact on silicon oxycarbide glasses properties. Structure and microstructure were examined both for xerogels and obtained silicon oxycarbide materials. Brunauer-Emmett-Teller (BET) analysis was performed to confirm that obtained materials are porous and Si/C ratio in siloxanes precursors affects porosity and specific surface area. This kind of porous ceramics could be potentially applied as gas sensors in high temperatures, catalyst supports, filters, adsorbents, or advanced drug delivery systems.
Collapse
|
19
|
Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant. Catalysts 2021. [DOI: 10.3390/catal11020252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.
Collapse
|
20
|
Wang Z, Babucci M, Zhang Y, Wen Y, Peng L, Yang B, Gates BC, Yang D. Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53537-53546. [PMID: 33180462 DOI: 10.1021/acsami.0c16559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many metal organic frameworks (MOFs) incorporate metal oxide clusters as nodes. Node sites where linkers are missing can be catalytic sites. We now show how to dial in the number and occupancy of such sites in MIL-53 and MIL-68, which incorporate aluminum-oxide-like nodes. The methods involve modulators used in synthesis and postsynthesis reactions to control the modulator-derived groups on these sites. We illustrate the methods using formic acid as a modulator, giving formate ligands on the sites, and these can be removed to leave μ2-OH groups and open Lewis acid sites. Methanol dehydration was used as a catalytic reaction to probe these sites, with infrared spectra giving evidence of methoxide ligands as reaction intermediates. Control of node surface chemistry opens the door for placement of a variety of ligands on a wide range of metal oxide cluster nodes for dialing in reactivity and catalytic properties of a potentially immense class of structurally well-defined materials.
Collapse
Affiliation(s)
- Zhengyan Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Melike Babucci
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, United States
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, United States
| | - Dong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| |
Collapse
|
21
|
Yeh JY, Matsagar BM, S. Chen S, Sung HL, Tsang DC, Li YP, Wu KCW. Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Panchenko VN, Kirillov VL, Gerasimov EY, Martyanov ON, Timofeeva MN. Isomerization of α-pinene oxide to campholenic aldehyde in the presence of Al-SiO2 and magnetic Al-SiO2/Fe3O4 catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
George C, Littlewood P, Stair PC. Understanding Pore Formation in ALD Alumina Overcoats. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20331-20343. [PMID: 32292027 DOI: 10.1021/acsami.9b23256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AlOX thin films deposited by atomic layer deposition (ALD) have previously been used to increase both stability and selectivity of supported palladium catalysts and are known to develop nanoscale porosity upon heating. Understanding the factors that affect ALD thin-film porosity enables future design of layered catalytic structures with tunable nanoscale features on industrially-relevant high-surface-area materials. In this study, porous and nonporous aluminum oxide supports with and without palladium nanoparticles were overcoated with thin films of 2-7 nm AlOX by ALD deposited at temperatures of 100, 200, and 300 °C. Hydroxyl loss and changes in surface chemistry were observed upon heating the films, and changes in surface area and pore volume of the annealed films were correlated to AlOX deposition temperature and the presence of Pd. Crystallization of the overcoat to γ-Al2O3 is shown to occur separately from hydroxyl loss and pore formation. A mechanistic understanding of pore formation in AlOX ALD films is obtained by reference to studies of the structural transformations accompanying the formation of transition aluminas from hydroxide precursors. Additionally, a direct and tunable correlation is established between pore development and the overall hydroxyl content of AlOX ALD coatings.
Collapse
Affiliation(s)
- Cassandra George
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Patrick Littlewood
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Peter C Stair
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
24
|
Synthesis, characterization and catalytic methanation performance of modified kaolin-supported Ni-based catalysts. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Hanukovich S, Dang A, Christopher P. Influence of Metal Oxide Support Acid Sites on Cu-Catalyzed Nonoxidative Dehydrogenation of Ethanol to Acetaldehyde. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05075] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergei Hanukovich
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Alan Dang
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
26
|
Zhang F, Szeto KC, Taoufik M, Delevoye L, Gauvin RM, Scott SL. Enhanced Metathesis Activity and Stability of Methyltrioxorhenium on a Mostly Amorphous Alumina: Role of the Local Grafting Environment. J Am Chem Soc 2018; 140:13854-13868. [PMID: 30269503 DOI: 10.1021/jacs.8b08630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inorganic oxides play a crucial role in the activation of atomically dispersed metal oxides for catalytic olefin transformations, but the inefficient activation processes remain poorly understood. Activation of methyltrioxorhenium (MTO) for propene metathesis via its deposition on the surface of γ-Al2O3 typically results in <5% active sites, and these sites deactivate rapidly. Simple substitution of the support by a less crystalline (largely amorphous) alumina ( a-Al2O3) results in ca. 4× more activity and at least 10× more productivity. On both types of alumina, metathesis is initiated only at specific sites, whose availability limits the catalytic activity. While the two aluminas have similar total numbers of Lewis acid sites, the less crystalline support activates twice as many grafted MTO sites. Interestingly, a-Al2O3 has nearly double the number of strong Lewis acid sites. However, the number of active sites is ca. 10× lower than the total number of strong Lewis acid sites, and metathesis proceeds even when most are occupied by pyridine. DQSQ and D-HMQC 1H and 27Al solid-state NMR reveal that many Lewis acid sites are co-located with surface hydroxyl groups, which prevent activation and/or cause rapid deactivation. Undercoordinated Al sites on dominant (110) facets, which retain hydroxyl groups under catalyst preparation conditions, are therefore unlikely to lead to stable active sites. In contrast, the minor (100) facets of γ-Al2O3, which are completely dehydroxylated, contain strongly Lewis-acidic five-coordinate Al sites that are necessarily remote from surface hydroxyl groups. Such sites, which are relatively more abundant on less well-crystallized aluminas, are inferred to be responsible for generating stable metathesis sites.
Collapse
Affiliation(s)
| | - Kai C Szeto
- Laboratoire de Chimie, Catalyse, Polymères et Procedés , UMR 5265 CNRS/ESCPE-Lyon/UCBL , ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| | - Mostafa Taoufik
- Laboratoire de Chimie, Catalyse, Polymères et Procedés , UMR 5265 CNRS/ESCPE-Lyon/UCBL , ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| | - Laurent Delevoye
- Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide , F-59000 Lille , France
| | - Régis M Gauvin
- Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide , F-59000 Lille , France
| | | |
Collapse
|
27
|
γ-Alumina and Amorphous Silica–Alumina: Structural Features, Acid Sites and the Role of Adsorbed Water. Top Catal 2017. [DOI: 10.1007/s11244-017-0838-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|