1
|
Wang H, Fang F, Zhang M, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119813. [PMID: 39142522 DOI: 10.1016/j.bbamcr.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Angiogenesis is closely related to renal fibrosis; however, its basic mechanism remains unclear. In our study, we found that nuclear receptor 4A1 (NR4A1) inhibits vascular endothelial growth factor A (VEGFA)-induced angiogenesis, ameliorating renal fibrosis. METHODS We prepared a renal fibrosis animal model with unilateral ureteral obstruction (UUO) and NR4A1 knockdown UUO mice model, Using Human umbilical vein endothelial cells (HUVECs) to conduct all in vitro experiments. We then detected and analyzed the expression levels of NR4A1 and other genes related to angiogenesis and fibrosis. RESULTS The angiogenesis related genes, such as VEGFA, vascular endothelial growth factor receptor-2 (VEGFR-2), endoglin (CD105), as well as the expression of fibrosis related genes that included, α-smooth muscle actin (α-SMA), Vimentin, and Collagen I are all significantly increased in the UUO rat model. In addition, the expression of NR4A1 of the kidney tissue of UUO rats was significantly reduced. Therefore, according to the above results, we speculated that angiogenesis may exacerbate renal fibrosis and NR4A1 may repress renal fibrosis by inhibiting angiogenesis. To further verify the above results, we used VEGFA to stimulate HUVECs with (or without) overexpression or knockdown of NR4A1. The results showed that with prolonged stimulation using VEGFA, the expression of NR4A1 decreases. Overexpression of NR4A1 significantly inhibits the expression of related indicators of angiogenesis and renal fibrosis. Furthermore, knockdown of NR4A1 induces endothelial cell proliferation and migration; therefore, exacerbating angiogenesis and fibrosis. Finally, the results of NR4A1 knockdown UUO mice showed that knockdown of NR4A1 can aggravating kidney damage and induce the expression of angiogenesis and renal fibrosis related indicators, while UUO can significantly induce kidney damage, angiogenesis and renal fibrosis. When knockdown of NR4A1, renal kidney damage, angiogenesis and fibrosis becomes more severe than UUO. Thus, all of these results indicate that NR4A1 can ameliorate renal fibrosis by inhibiting angiogenesis. CONCLUSIONS NR4A1 can inhibit angiogenesis to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China.
| |
Collapse
|
2
|
Chen X, Gao M, Xia Y, Wang X, Qin J, He H, Liu W, Zhang X, Peng S, Zeng Z, Su Y, Zhang X. Phase separation of Nur77 mediates XS561-induced apoptosis by promoting the formation of Nur77/Bcl-2 condensates. Acta Pharm Sin B 2024; 14:1204-1221. [PMID: 38486987 PMCID: PMC10935061 DOI: 10.1016/j.apsb.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 03/17/2024] Open
Abstract
The orphan nuclear receptor Nur77 is a critical regulator of the survival and death of tumor cells. The pro-death effect of Nur77 can be regulated by its interaction with Bcl-2, resulting in conversion of Bcl-2 from a survival to killer. As Bcl-2 is overexpressed in various cancers preventing them from apoptosis and promoting their resistance to chemotherapy, targeting the apoptotic pathway of Nur77/Bcl-2 may lead to new cancer therapeutics. Here, we report our identification of XS561 as a novel Nur77 ligand that induces apoptosis of tumor cells by activating the Nur77/Bcl-2 pathway. In vitro and animal studies revealed an apoptotic effect of XS561 in a range of tumor cell lines including MDA-MB-231 triple-negative breast cancer (TNBC) and MCF-7/LCC2 tamoxifen-resistant breast cancer (TAMR) in a Nur77-dependent manner. Mechanistic studies showed XS561 potently induced the translocation of Nur77 from the nucleus to mitochondria, resulting in mitochondria-related apoptosis. Interestingly, XS561-induced accumulation of Nur77 at mitochondria was associated with XS561 induction of Nur77 phase separation and the formation of Nur77/Bcl-2 condensates. Together, our studies identify XS561 as a new activator of the Nur77/Bcl-2 apoptotic pathway and reveal a role of phase separation in mediating the apoptotic effect of Nur77 at mitochondria.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Meichun Gao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Yongzhen Xia
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Xin Wang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Jingbo Qin
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Hongying He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Weirong Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Xiaowei Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Shuangzhou Peng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Zhiping Zeng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Ying Su
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- NucMito Pharmaceuticals Co., Ltd., Xiamen 361000, China
| | - Xiaokun Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| |
Collapse
|
3
|
Zhao R, He T, Xing Y, Luo J. COG1410 regulates microglial states and protects retinal ganglion cells in retinal ischemia-reperfusion injury. Exp Eye Res 2023; 237:109678. [PMID: 37839665 DOI: 10.1016/j.exer.2023.109678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Progressive loss of retinal ganglion cells (RGCs) caused by retinal ischemia-reperfusion (IR) injury can lead to irreversible vision impairment, with neuroinflammatory responses playing an important role in this process. COG1410, a mimetic peptide of apolipoprotein E, has demonstrated protective potential in the central nervous system, but its effects on retinal IR injury remain unexplored. In this study, we established a mouse model of retinal IR injury to investigate the effects of COG1410 on retinal microglia and RGCs. We observed CD16/32-marked and CD206-marked microglia and RGCs using immunofluorescence staining, detected the expression of inflammatory factors by PCR, and evaluated retinal apoptosis with TUNEL staining. We further investigated the potential mechanism by detecting the expression of key proteins via Western blot. The results reveal that COG1410 decreased the number of CD16/32-marked microglia and increased the number of CD206-marked microglia, alleviated the expression of IL-1β and TNF-α, and reduced the loss of RGCs by inhibiting the mitochondrial-related apoptotic pathway. COG1410 was found to increase the expression of ERK1/2 and Nr4a1 but decrease the expression of NF-κB. The expression of TREM2 showed an increasing trend after COG1410 administration, but it was not statistically significant. In conclusion, COG1410 regulates microglial states and protects RGCs in retinal IR injury, showing promising potential for the treatment of eye diseases.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Martirosyan YO, Silachev DN, Nazarenko TA, Birukova AM, Vishnyakova PA, Sukhikh GT. Stem-Cell-Derived Extracellular Vesicles: Unlocking New Possibilities for Treating Diminished Ovarian Reserve and Premature Ovarian Insufficiency. Life (Basel) 2023; 13:2247. [PMID: 38137848 PMCID: PMC10744991 DOI: 10.3390/life13122247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Despite advancements in assisted reproductive technology (ART), achieving successful pregnancy rates remains challenging. Diminished ovarian reserve and premature ovarian insufficiency hinder IVF success-about 20% of in vitro fertilization (IVF) patients face a poor prognosis due to a low response, leading to higher cancellations and reduced birth rates. In an attempt to address the issue of premature ovarian insufficiency (POI), we conducted systematic PubMed and Web of Science research, using keywords "stem cells", "extracellular vesicles", "premature ovarian insufficiency", "diminished ovarian reserve" and "exosomes". Amid the complex ovarian dynamics and challenges like POI, stem cell therapy and particularly the use of extracellular vesicles (EVs), a great potential is shown. EVs trigger paracrine mechanisms via microRNAs and bioactive molecules, suppressing apoptosis, stimulating angiogenesis and activating latent regenerative potential. Key microRNAs influence estrogen secretion, proliferation and apoptosis resistance. Extracellular vesicles present a lot of possibilities for treating infertility, and understanding their molecular mechanisms is crucial for maximizing EVs' therapeutic potential in addressing ovarian disorders and promoting reproductive health.
Collapse
Affiliation(s)
- Yana O. Martirosyan
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
| | - Denis N. Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Tatiana A. Nazarenko
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
| | - Almina M. Birukova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
| | - Polina A. Vishnyakova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Gennadiy T. Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (T.A.N.); (A.M.B.); (P.A.V.); (G.T.S.)
| |
Collapse
|
5
|
Nakayama T, Hirano F, Okushi Y, Matsuura K, Ohashi M, Matsumiya A, Yoshimura T. Orphan nuclear receptor nr4a1 regulates winter depression-like behavior in medaka. Neurosci Lett 2023; 814:137469. [PMID: 37669713 DOI: 10.1016/j.neulet.2023.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
About 10% of the population suffers from depression in winter at high latitude. Although it has become a serious public health issue, its underlying mechanism remains unknown and new treatments and therapies are required. As an adaptive strategy, many animals also exhibit depression-like behavior in winter. Previously, it has been reported that celastrol, a traditional Chinese medicine, can rescue winter depression-like behavior in medaka, an excellent model of winter depression. Nuclear receptor subfamily 4 group A member 1 (nr4a1, also known as nur77) is a known target of celastrol, and the signaling pathway of nr4a1 was suggested to be inactive in medaka brain during winter, implying the association of nr4a1 and winter depression-like behavior. However, the direct evidence for its involvement in winter depression-like behavior remains unclear. The present study found that nr4a1 was suppressed in the medaka brain under winter conditions. Cytosporone B, nr4a1 chemical activator, reversed winter depression-like behavior under winter conditions. Additionally, nr4a1 mutant fish generated by CRISPR/Cas9 system showed decreased sociability under summer conditions. Therefore, our results demonstrate that the seasonal regulation of nr4a1 regulates winter depression-like behavior and offers potential therapeutic target.
Collapse
Affiliation(s)
- Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Fuka Hirano
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuki Okushi
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kosuke Matsuura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Miki Ohashi
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akiko Matsumiya
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
6
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
7
|
Dual role of NR4A1 in porcine ovarian granulosa cell differentiation and granulosa-lutein cell regression in vitro. Theriogenology 2023; 198:292-304. [PMID: 36634443 DOI: 10.1016/j.theriogenology.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the role of NR4A1 in forskolin (FSK)-induced granulosa cell (GC) differentiation and PGF2α-induced granulosa-lutein cell (GLC) regression. For experiment 1, primary porcine GCs were pre-cultured for 6 d before induced-differentiation by FSK with or without siNR4A1, and changes in GC proliferation, lipid droplets (LDs), and P4 level were detected. For experiment 2, the GLC model was established by FSK as in experiment 1, and then PGF2α was utilized to induce GLC regression with or without siNR4A1, changes in P4 secretion, apoptosis proteins, and associated signaling pathway members were detected. Results showed that in experiment 1, FSK up-regulated NR4A1 expression during GC differentiation and decreased GC proliferation activity, which was reversed by siNR4A1. siNR4A1 inhibited the FSK-induced decreases in Cyclin B1/D1 and CDK1/2 mRNA abundances, and increases in P21/P27 mRNA abundances, and FSK-induced LD accumulation. FSK up-regulated P4 secretion and StAR, CYP11A1 and HSD3B expression, decreased CYP19A1 expression, which were reversed by siNR4A1 except for StAR expression. In experiment 2, PGF2α induced NR4A1 expression and reduced GLC viability, which were reversed by siNR4A1. Compared with PGF2α group, the levels of P4 secretion and StAR expression were higher in PGF2α+siNR4A1 group, while CYP11A1 and HSD3B expressions held at low levels. siNR4A1 inhibited PGF2α-induced expression of apoptosis proteins (caspase3, Bax, Fas, TNFa), ATF3, and phosphorylated MAPKs (ERK1/2, P38, JNK). In summary, NR4A1 is involved in regulating porcine GC differentiation and GLC regression as well as the changes in cell proliferation, apoptosis, steroidogenesis, and MAPK pathways, which provide a theoretical basis for further understanding of the mechanism of porcine luteal formation and regression.
Collapse
|
8
|
Ning W, Xu N, Zhou C, Zou L, Quan J, Yang H, Lu Z, Cao H, Liu J. Ethyl Acetate Fraction of Hedyotis diffusa Willd Induces Apoptosis via JNK/Nur77 Pathway in Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1932777. [PMID: 36062172 PMCID: PMC9433286 DOI: 10.1155/2022/1932777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by poor diagnosis and high mortality. Novel and efficient therapeutic agents are urgently needed for the treatment. Hedyotis diffusa Willd (HDW) is used to treat cancers, especially HCC in China. Purpose The study aimed to identify the main anti-HCC extract in HDW and to explore the mechanism of the active extract. Materials and Methods The high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-QTOF-MS) method was used for the simultaneous determination of main compounds in the ethyl acetate fraction of HDW (EHDW). The toxicity test of different HDW fractions was carried out on larvae at 2 day-post-fertilization (dpf) for 72 h. The in vivo anti-HCC effect of different HDW fractions was evaluated on a zebrafish tumor model by immersion administration. The antiproliferative effect of HDW fractions was determined with MTT assay, as well as hematoxylin and eosin (HE) staining assay. Hoechst 33258 staining was used to observe changes in nucleus morphology. Flow cytometry analysis was used to investigate apoptosis induction. Western blot analysis was used to examine apoptosis-related proteins, and key proteins in JNK/Nur77 signaling pathway. SP600125 was served to validate the apoptotic mechanism. Results EHDW showed the strongest tumor cell growth inhibitory effect on zebrafish tumor model. Further study revealed that EHDW induced apoptosis in zebrafish tumor model and in cultured Hep3B cells. Meanwhile, it has been shown that the levels of BCL2-associated X (Bax), cytochrome c (cyto c), cleaved-caspase 3, and poly-ADP-ribose polymerase (PARP) cells were upregulated. In contrast, the level of antiapoptotic B cell lymphoma-2 (Bcl-2) was downregulated in Hep3B cells. Additionally, EHDW activated JNK/Nur77 pathway by increasing the levels of p-JNK(Thr183/Tyr185) and p-Nur77(Ser351). Further study showed that blockage of JNK by SP600125 reversed EHDW-induced JNK/Nur77 pathway and the downstream apoptotic proteins. Conclusion In conclusion, EHDW exerted the anti-HCC effect, which may be attributed to the activation of JNK/Nur77 pathway. This study supported the rationale of HDW as an HCC therapeutic agent.
Collapse
Affiliation(s)
- Weimin Ning
- Dongguan Hospital of Chinese Medicine affiliated to Guangzhou University of Chinese Medicine, Dongguan 523005, China
| | - Nishan Xu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunhong Zhou
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lifang Zou
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyu Quan
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hua Yang
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zinbin Lu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junshan Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Deng S, Chen B, Huo J, Liu X. Therapeutic potential of NR4A1 in cancer: Focus on metabolism. Front Oncol 2022; 12:972984. [PMID: 36052242 PMCID: PMC9424640 DOI: 10.3389/fonc.2022.972984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is a vital hallmark of cancer, and it provides the necessary energy and biological materials to support the continuous proliferation and survival of tumor cells. NR4A1 is belonging to nuclear subfamily 4 (NR4A) receptors. NR4A1 plays diverse roles in many tumors, including melanoma, colorectal cancer, breast cancer, and hepatocellular cancer, to regulate cell growth, apoptosis, metastasis. Recent reports shown that NR4A1 exhibits unique metabolic regulating effects in cancers. This receptor was first found to mediate glycolysis via key enzymes glucose transporters (GLUTs), hexokinase 2 (HK2), fructose phosphate kinase (PFK), and pyruvate kinase (PK). Then its functions extended to fatty acid synthesis by modulating CD36, fatty acid-binding proteins (FABPs), sterol regulatory element-binding protein 1 (SREBP1), glutamine by Myc, mammalian target of rapamycin (mTOR), and hypoxia-inducible factors alpha (HIF-1α), respectively. In addition, NR4A1 is involving in amino acid metabolism and tumor immunity by metabolic processes. More and more NR4A1 ligands are found to participate in tumor metabolic reprogramming, suggesting that regulating NR4A1 by novel ligands is a promising approach to alter metabolism signaling pathways in cancer therapy. Basic on this, this review highlighted the diverse metabolic roles of NR4A1 in cancers, which provides vital references for the clinical application.
Collapse
Affiliation(s)
- Shan Deng
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Jiege Huo
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xin Liu, ; Jiege Huo,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Xin Liu, ; Jiege Huo,
| |
Collapse
|
10
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
11
|
Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered 2022; 13:8349-8359. [PMID: 35311465 PMCID: PMC9161842 DOI: 10.1080/21655979.2022.2053804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/03/2023] Open
Abstract
The nuclear receptor 4A1 (NR4A1) is widely involved in the regulation of cell survival and is related to ischemic injury in several organs. This research examined the emerging role and mechanism of NR4A1 in hepatocyte ischemia-reperfusion injury (IRI). BRL-3A cells were subjected to hypoxia-reperfusion (H/R) to simulate an IRI model in vitro. The expression of NR4A1 and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway-related proteins (LKB1, AMPK, and ACC) was detected by western blotting or RT-qPCR under H/R condition after NR4A1 overexpression or silencing. Then, radicicol, an inhibitor of LKB1 pathway, was used to determine the role of NR4A1 in hepatocyte H/R injury by regulating LKB1. Under the help of CCK-8 assay, cell viability was assessed. The levels of ROS, MDA, and SOD were determined with corresponding kits to evaluate oxidative stress. Additionally, RT-qPCR was employed to analyze the releases of the inflammatory factors. Flow cytometry was applied to estimate the apoptosis and its related proteins, and autophagy-associated proteins were assayed by western blotting. Results indicated that NR4A1 was highly expressed, while proteins in LKB1/AMPK signaling was downregulated in BRL-3A cells exposed to H/R. The activation of LKB1/AMPK pathway could be negatively regulated by NR4A1. Moreover, NR4A1 depletion conspicuously promoted cell viability, inhibited oxidative stress as well as inflammation, and induced apoptosis and autophagy in H/R-stimulated BRL-3A cells, which were reversed after radicicol intervention. Collectively, NR4A1/LKB1/AMPK axis is a new protective pathway involved in hepatocyte IRI, shedding new insights into the improvement of hepatocyte IRI.
Collapse
Affiliation(s)
- Yu Zheng
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingying Tao
- Emergency Intensive Care Unit, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Xiaobo Zhan
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Qi Wu
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Men LH, Song TT, Wang X, Hui WT, Gu YW, Du WJ, Zhang SW, Chen X. Sodium butyrate protects against focal cerebral ischemic injury through the regulation of the nuclear receptor Nur77. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Li B, Yao J, He F, Liu J, Lin Z, Liu S, Wang W, Wu T, Huang J, Chen K, Fang M, Chen J, Zeng JZ. Synthesis, SAR study, and bioactivity evaluation of a series of Quinoline-Indole-Schiff base derivatives: Compound 10E as a new Nur77 exporter and autophagic death inducer. Bioorg Chem 2021; 113:105008. [PMID: 34089944 DOI: 10.1016/j.bioorg.2021.105008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
We previously reported 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole- 2-carbohydrazide derivatives as new Nur77 modulators. In this study, we explored whether the 8-methoxy-2-methylquinoline moiety and bicyclic aromatic rings at the N'-methylene position were critical for their antitumor activity against hepatocellular carcinoma (HCC). For this purpose, a small library of 5-substituted 1H-indole-2-carbohydrazide derivatives was designed and synthesized. We found that the 8-methoxy-2-methylquinoline moiety was a fundamental structure for its biological function, while the introduction of the bicyclic aromatic ring into the N'-methylene greatly improved its anti-tumor effect. We found that the representative compound 10E had a high affinity to Nur77. The KD values were in the low micromolar (2.25-4.10 μM), which were coincident with its IC50 values against the tumor cell lines (IC50 < 3.78 μM). Compound 10E could induce autophagic cell death of liver cancer cells by targeting Nur77 to mitochondria while knocking down Nur77 greatly impaired anti-tumor effect. These findings provide an insight into the structure-activity relation of Quinoline-Indole-Schiff base derivatives and further demonstrate that antitumor agents targeting Nur77 may be considered as a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Baicun Li
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Department of Physiology, Peking Union Medical College, Beijing 100730, China
| | - Jie Yao
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China; Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Fengming He
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zongxin Lin
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shunzhi Liu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Tong Wu
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiangang Huang
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Chen
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jingwei Chen
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
β-glucan from Lentinus edodes inhibits breast cancer progression via the Nur77/HIF-1α axis. Biosci Rep 2021; 40:227063. [PMID: 33245358 PMCID: PMC7736624 DOI: 10.1042/bsr20201006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: β-glucan from Lentinus edodes (LNT) is a plant-derived medicinal fungus possessing significant bioactivities on anti-tumor. Both hypoxia-induced factor-1α (HIF)-1α and Nur77 have been shown to be involved in the development of breast cancer. However, there is yet no proof of Nur77/HIF-1α involvement in the process of LNT-mediated tumor-inhibition effect. Methods: Immunohistochemistry, immunofluorescence and Hematoxylin–Eosin staining were used to investigate tumor growth and metastasis in MMTV-PyMT transgenic mice. Proliferation and metastasis-associated molecules were determined by Western blotting and reverse transcription-quantitative PCR. Hypoxic cellular model was established under the exposure of CoCl2. Small interference RNA was transfected using Lipofectamine reagent. The ubiquitin proteasome pathway was blunted by adding the proteasome inhibitor MG132. Results: LNT inhibited the growth of breast tumors and the development of lung metastases from breast cancer, accompanied by a decreased expression of HIF-1α in the tumor tissues. In in vitro experiments, hypoxia induced the expression of HIF-1α and Nur77 in breast cancer cells, while LNT addition down-regulated HIF-1α expression in an oxygen-free environment, and this process was in a manner of Nur77 dependent. Mechanistically, LNT evoked the down-regulation of HIF-1α involved the Nur77-mediated ubiquitin proteasome pathway. A strong positive correlation between Nur77 and HIF-1α expression in human breast cancer specimens was also confirmed. Conclusion: Therefore, LNT appears to inhibit the progression of breast cancer partly through the Nur77/HIF-1α signaling axis. The findings of the present study may provide a theoretical basis for targeting HIFs in the treatment of breast cancer.
Collapse
|
15
|
Regulatory Effects of Nur77 on Airway Remodeling and ASMC Proliferation in House Dust Mite-Induced Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4565246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Airway remodeling played a vital role in the development of asthma, and airway smooth muscle (ASM) mass was its hallmark. However, few strategies targeting ASM remodeling were developed in treating asthma. Nur77 was the transcription factor nuclear receptor involved in the pathogenesis of several lung diseases. Nur77 distribution and expression were determined in an HDM-mediated allergic asthma model. Its effect on airway hyperresponsiveness (AHR), chronic inflammation, and ASM remodeling in asthmatic mice was evaluated using a lentivirus-mediated shRNA. Possible mechanisms were explored by examining Nur77 actions and its underlying pathways in primary human AMC cells (ASMCs). In this study, we reported that Nur77 expression was mainly distributed along ASM and increased in lungs of HDM-challenged mice. Nur77 depletion by lentivirus-mediated shRNA ameliorated AHR, chronic inflammation, goblet cell hyperplasia, and airway remodeling in the asthmatic mouse model. By means of primary human ASMC, we discovered that Nur77 upregulation by HDM stimulation promoted cell proliferation and ROS production, as well as reduced antioxidant gene expression. These alterations might associate with MFN2/MAPK/AKT pathways. These findings broadened our understanding of airway remodeling and ASMC proliferation, which might provide a novel therapeutic target for asthma patients.
Collapse
|
16
|
Tu X, Chen X, Zhang D, Gao M, Liang J, Bao G, Zhang J, Peng S, Zhang X, Zeng Z, Su Y. Optimization of novel oxidative DIMs as Nur77 modulators of the Nur77-Bcl-2 apoptotic pathway. Eur J Med Chem 2020; 211:113020. [PMID: 33279290 DOI: 10.1016/j.ejmech.2020.113020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Nur77, an orphan nuclear receptor, is a member of the nuclear receptor superfamily. Nur77 plays important roles in various biological processes. Previously we reported that BI1071(DIM-C-pPhCF3+MeSO3-), an oxidized form and methanesulfonate salt of (4-CF3-Ph-C-DIM), can modulate Nur77's non-genomic apoptotic pathway through that Nur77 translocated from the nucleus to mitochondria to induce cytochrome c releasing and promote apoptosis of cancer cell. Here we report our efforts to further optimize BI1071. A series of BI1071 analogs were designed, synthesized and their apoptosis potency was systematically evaluated. Our preliminary structure-activity relationship study identified compound 10b as a better modulator with strong binding to Nur77 and enhanced apoptotic activity. Binding studies demonstrated that 10b could bind to its target Nur77 with an affinity value of 33 nM. Furthermore, mechanism studies reveal that 10b acts as an anticancer agent by utilizing the Nur77-Bcl-2 apoptotic pathway.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Molecular Docking Simulation
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxidation-Reduction
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xuhuang Tu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaohui Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Dongliang Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Meichun Gao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jingmei Liang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Guoliang Bao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jie Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Shuangzhou Peng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaokun Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Zhiping Zeng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China.
| | - Ying Su
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China; NucMito Pharmaceuticals, Xiamen 361000, China.
| |
Collapse
|
17
|
Feng P, Li P, Tan J. Human Menstrual Blood-Derived Stromal Cells Promote Recovery of Premature Ovarian Insufficiency Via Regulating the ECM-Dependent FAK/AKT Signaling. Stem Cell Rev Rep 2020; 15:241-255. [PMID: 30560467 PMCID: PMC6441404 DOI: 10.1007/s12015-018-9867-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
POI is characterized by “absent not abnormal” menstruation with hormonal disorders in woman younger than 40 years of age, and etiological and pathophysiological mechanisms underlying the POI development have not been clearly defined. Recently, due to advantages such as abundant sources and non-invasive methods of harvest, MenSCs have been emerging as a promising treatment strategy for the recovery of female reproductive damage. Here, we demonstrated that MenSCs graft in POI mice after CTX treatment could restore ovarian function by regulating normal follicle development and estrous cycle, reducing apoptosis in ovaries to maintain homeostasis of microenvironment and modulating serum sex hormones to a relatively normal status. Moreover, MenSCs participated in the activation of ovarian transcriptional expression in ECM-dependent FAK/AKT signaling pathway and thus restored ovarian function to a certain extent. MenSCs transplantation was proved to be an effective way to repair ovarian function with low immunogenicity, suggesting its great potential for POI treatment.
Collapse
Affiliation(s)
- Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Pingping Li
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Jichun Tan
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
18
|
Deficiency of the Transcription Factor NR4A1 Enhances Bacterial Clearance and Prevents Lung Injury During Escherichia Coli Pneumonia. Shock 2020; 51:787-794. [PMID: 29846361 DOI: 10.1097/shk.0000000000001184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Bacterial pneumonia is one of the most common diagnoses and a leading cause of death in the intensive care unit. NR4A1 is an early response gene that has been identified as a vital regulator of immune and inflammatory responses. This study aims to explore the role of NR4A1 in Escherichia coli (E. coli) pneumonia. METHODS Alveolar macrophages (AMs) were isolated from wild-type (WT) and NR4A1 knock out (Nr4a1) mice, and the NR4A1 expression and phagocytic capacity against E. coli were measured in vitro. WT and Nr4a1 mice were subjected to E. coli or sham pneumonia. Bacterial load, lung injury severity, inflammatory cell infiltration, and cytokines were assessed at 0, 4, and 18 h after surgery. Survival rates within 48 h were evaluated in WT and Nr4a1 mice. In addition, NR4A1 antagonist (DIM-C-pPhCO2Me) was also used to confirm the role of NR4A1 in vivo and ex vivo. RESULTS NR4A1 was rapidly induced in AMs at 15 min after E. coli stimulation. Compared with untreated WT AMs, NR4A1 deficiency and DIM-C-pPhCO2Me treatment showed an enhanced phagocytic function (47.72 ± 0.74% vs. 62.3 ± 0.9%, P < 0.001; 11.79 ± 1.21% vs. 30.08 ± 0.79%, P < 0.001, respectively) at 30 min after the E. coli challenge in vitro. NR4A1 deficiency significantly improved the survival rate (33.3% in WT vs. 82.4% in Nr4a1, P < 0.01), which is comparable with DIM-C-pPhCO2Me pretreatment. The survival advantage of Nr4a1 mice was associated with decreased bacterial burden and inflammation and alleviated lung damage. CONCLUSIONS These data demonstrate that NR4A1 impairs the phagocytic capacity of AMs and disrupts the host defense against invading bacteria, worsening the outcome of E. coli pneumonia in mice.
Collapse
|
19
|
Chen C, Li Y, Hou S, Bourbon PM, Qin L, Zhao K, Ye T, Zhao D, Zeng H. Orphan nuclear receptor TR3/Nur77 biologics inhibit tumor growth by targeting angiogenesis and tumor cells. Microvasc Res 2019; 128:103934. [PMID: 31654655 DOI: 10.1016/j.mvr.2019.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Pathological angiogenesis is a hallmark of many diseases. Previously, we reported that orphan nuclear receptor TR3/Nur77 was a critical mediator of angiogenesis to regulate tumor growth, sepsis and skin wound healing. However, none of the TR3/Nur77 targeting molecule has been in clinical trial so far. Here, we designed and generated novel TR3 shRNAs and two minigenes that had therapeutic potential for cancer treatment. In addition to extend our previous findings that tumor growth was inhibited in Nur77 knockout mice, we found that metastasis of colorectal tumor was completely inhibited in Nur77-/- mice. Tumor masses were increased ~70% and decreased ~40% in our transgenic EC-Nur77-S mice and EC-Nur77-DN mice, in which the full-length cDNA and the dominant negative mutant of TR3/Nur77 were inducibly and specifically expressed in mouse endothelium, respectively. TR3 was highly expressed in the vasculature and tumor cells of human melanoma and colorectal cancer tissues, but not in normal tissues. The novel TR3 shRNAs and two minigenes almost completely inhibited the proliferation and migration of HUVECs and human melanoma A375sm cells. Angiogenesis induced by adenoviruses expressing VEGF and melanoma growth in mice were greatly and significantly inhibited by systemically administration of adenoviruses expressing TR3 shRNAs and two minigenes. Tumor angiogenesis and the expressions of genes associated with angiogenesis were greatly regulated in tumor tissues treated with TR3 shRNAs and minigenes. Taken together, these studies demonstrated that TR3/Nur77 was a specific therapeutic target for several human cancers by targeting both tumor cells and tumor microenvironment. These TR3/Nur77 biologics inhibit angiogenesis and tumor growth, and have translational potential.
Collapse
Affiliation(s)
- Chen Chen
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Surgery of Breast and Thyroid, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yan Li
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - Shiqiang Hou
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Pierre M Bourbon
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Liuliang Qin
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kevin Zhao
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Taiyang Ye
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Obstetrics & Gynecology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, PR China
| | - Dezheng Zhao
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Huiyan Zeng
- Center for Vascular Biology Research and Division of Gastroenterology, Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Tommasi C, Rogerson C, Depledge DP, Jones M, Naeem AS, Venturini C, Frampton D, Tutill HJ, Way B, Breuer J, O'Shaughnessy RFL. Kallikrein-Mediated Cytokeratin 10 Degradation Is Required for Varicella Zoster Virus Propagation in Skin. J Invest Dermatol 2019; 140:774-784.e11. [PMID: 31626786 DOI: 10.1016/j.jid.2019.08.448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Varicella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs. In VZV-infected skin, kallikrein 6 and the ubiquitin ligase MDM2 are upregulated concomitant with keratin 10 (KRT10) downregulation. MDM2 binds to KRT10, targeting it for degradation via the ubiquitin-proteasome pathway. Preventing KRT10 degradation reduced VZV propagation in culture and prevented epidermal disruption in skin explants. KRT10 knockdown induced expression of NR4A1 and enhanced viral propagation in culture. NR4A1 knockdown prevented viral propagation in culture, reduced LC3 levels, and increased LAMP2 expression. We therefore describe a drug-able pathway whereby MDM2 ubiquitinates and degrades KRT10, increasing NR4A1 expression and allowing VZV replication and propagation.
Collapse
Affiliation(s)
- Cristina Tommasi
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom
| | - Daniel P Depledge
- Infection and Immunity, University College London, London, United Kingdom; Department of Microbiology, New York University, New York, New York
| | - Meleri Jones
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom; Infection and Immunity, University College London, London, United Kingdom
| | - Aishath S Naeem
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Cristina Venturini
- Infection and Immunity, University College London, London, United Kingdom
| | - Dan Frampton
- Infection and Immunity, University College London, London, United Kingdom
| | - Helena J Tutill
- Infection and Immunity, University College London, London, United Kingdom
| | - Benjamin Way
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Judith Breuer
- Infection and Immunity, University College London, London, United Kingdom
| | - Ryan F L O'Shaughnessy
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
21
|
Shen J, Zhu X, Zhang M, Jiang Y, Yan G, Wang Z, Sun L, Zhang Q. Nur77 promotes embryo adhesion by transcriptionally regulating HOXA10 expression. Syst Biol Reprod Med 2019; 66:50-58. [PMID: 31574241 DOI: 10.1080/19396368.2019.1671536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jingtao Shen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xudong Zhu
- College of Science Isotope Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lihua Sun
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Qin H, Gao F, Wang Y, Huang B, Peng L, Mo B, Wang C. Nur77 promotes cigarette smoke‑induced autophagic cell death by increasing the dissociation of Bcl2 from Beclin-1. Int J Mol Med 2019; 44:25-36. [PMID: 31115481 PMCID: PMC6559304 DOI: 10.3892/ijmm.2019.4184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by partially reversible airflow limitation and persistent alveolar destruction, and autophagy is involved in the pathogenesis of cigarette smoke (CS)‑induced COPD. Nuclear receptor 77 (Nur77) participates in a number of biological processes, including apoptosis, autophagy and in disease pathogenesis; however, the role of Nur77 in COPD remains unknown. Thus, in this study, we aimed to elucidate the role of Nur77 in COPD. We report that CS promotes Nur77 expression and nuclear export in vivo and in vitro, which increases cigarette smoke extract (CSE)‑induced autophagy. In addition, we found that lung tissues, human bronchial epithelial (HBE) cells and A549 cells exposed to CS or CSE expressed lower levels of LC3 and Beclin‑1 and contained fewer autophagosomes following Nur77 knockdown with siRNA‑Nur77. Moreover, a co‑immunoprecipitation assay demonstrated that CSE promoted autophagy, partly by accelerating the interaction between Nur77 and Bcl2, in turn leading to the increased dissociation of Bcl2 from Beclin‑1; by contrast, leptomycin B (LMB) suppressed the dissociation of Bcl2 from Beclin‑1. Taken together, the findings of this study demonstrate that Nur77 is involved in the CSE‑induced autophagic death of lung cells, and that this process is partially dependent on the increased interaction between Nur77 and Bcl2, and on the dissociation of Bcl2 from Beclin‑1. This study illustrates the role of Nur77 in bronchial and alveolar destruction following exposure to CS.
Collapse
Affiliation(s)
- Huiping Qin
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of The National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541002
| | - Yanni Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of The National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541002
| | - Ling Peng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of The National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Biwen Mo
- Department of Respiratory Medicine, Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Changming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541002,Correspondence to: Dr Changming Wang, Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, 12 Wenming Road, Guilin, Guangxi 541002, P.R. China, E-mail:
| |
Collapse
|
23
|
Peng J, Zhao S, Li Y, Niu G, Chen C, Ye T, Zhao D, Zeng H. DLL4 and Jagged1 are angiogenic targets of orphan nuclear receptor TR3/Nur77. Microvasc Res 2019; 124:67-75. [PMID: 30930165 DOI: 10.1016/j.mvr.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
Pathological angiogenesis is a hallmark of many diseases. Previously, we reported that orphan nuclear receptor TR3/Nur77 was a critical mediator of angiogenesis to regulate tumor growth and skin wound healing via regulating the expression of the junctional proteins and integrins. However, the molecular mechanism, by which TR3/Nur77 regulates angiogenesis is not completely understood. Here, we were the first to find that TR3/Nur77, via its various amino acid fragments, regulated the expression of DLL4 and Jagged 1 in cultured endothelial cells. DLL4 and Jagged1 mediated TR3/Nur77-induced angiogenic responses and signaling molecules, but not the expression of integrins. Instead, integrins regulated the expressions of DLL4 and Jagged1 induced by TR3/Nur77. Further, DLL4, Jagged1 and integrins α1, α2, β3 and β5 were regulated by TR3/Nur77 in animal sepsis models of lipopolysaccharide (LPS)-induced endotoxemia, and cecal ligation and puncture (CLP), in which, TR3/Nur77 expression was significantly and tranciently increased. Mouse survival rates were greatly increased in Nur77 knockout mice bearing both CLP and LPS models. The results elucidated a novel axis of VEGF/histamine ➔ TR3/Nur77 ➔ integrins ➔ DLL4/Jagged1 in angiogenesis, and demonstrated that TR3/Nur77 was an excellent target for sepsis. These studies supported our previous findings that TR3/Nur77 was an excellent therapeutic target, and further our understanding of the molecular mechanism, by which TR3/Nur77 regulated angiogenesis.
Collapse
Affiliation(s)
- Jin Peng
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Radiotherapy and Medical Oncology Department, Zhongnan Hospital, Wuhan University, Wuhan, PR China
| | - Shengqiang Zhao
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Yan Li
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Gengming Niu
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Chen Chen
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Surgery of Breast and Thyroid, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Taiyang Ye
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Obstetrics & Gynecology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, PR China
| | - Dezheng Zhao
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Huiyan Zeng
- Center for Vascular Biology Research and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Wu L, Chen L. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Mol Med Rep 2018; 18:4793-4801. [PMID: 30272297 PMCID: PMC6236262 DOI: 10.3892/mmr.2018.9515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77/TR3/NGFIB), a member of the nuclear receptor superfamily, is expressed as an early response gene to regulate the expression of multiple target genes. Nur77 has the typical structure of a nuclear receptor, including an N‑terminal domain, a DNA binding domain, and a ligand‑binding domain. The expression and localization of Nur77 are closely associated with its roles in cell proliferation and apoptosis. Nur77 was first identified as an orphan receptor, the endogenous ligand of which has not yet been identified; however, an increasing number of compounds targeting Nur77 have been reported to have beneficial effects in the treatment of cancer and other diseases. This review provides a brief overview of the identification, structure, expression and localization, transcriptional role and non‑genomic function of Nur77, and summarizes the ligands that have been shown to interact with Nur77, including cytosporone B, cisplatin, TMPA, PDNPA, CCE9, THPN, Z‑ligustilide, celastrol and bisindole methane compounds, which may potentially be used to treat cancer in humans.
Collapse
Affiliation(s)
- Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
25
|
Dai Y, Jin W, Cheng L, Yu C, Chen C, Ni H. Nur77 is a promoting factor in traumatic brain injury-induced nerve cell apoptosis. Biomed Pharmacother 2018; 108:774-782. [PMID: 30248546 DOI: 10.1016/j.biopha.2018.09.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022] Open
Abstract
Traumatic brain injury (TBI) poses a serious threat to human health. TBI has a high mortality rate, resulting in a great burden on the affected individual's family as well as society as a whole. The incidence of craniocerebral fractures continues to rise as both the economy and transportation options grow, making it imperative that the mortality and disability rate of craniocerebral trauma be reduced. Nur77 is a transcription factor of the nuclear receptor superfamily. Following stimulation of extracellular apoptosis, Nur77 is involved in a variety of diseases as a powerful pro-apoptotic molecule. Here, we determined the effect and mechanism of Nur77 in TBI-induced nerve cell apoptosis in vitro and in vivo. We found that Nur77 and Bcl-2 protein expression increased as nerve cell apoptosis increased in TBI tissues. Furthermore, inhibition of Nur77 improved nerve cell injury by regulation of Bcl-2 and downstream pathways in vitro and in vivo.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Jin
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Longyang Cheng
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chen Yu
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cheng Chen
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Hongbin Ni
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
26
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
27
|
NR4A1 inhibition synergizes with ibrutinib in killing mantle cell lymphoma cells. Blood Cancer J 2017; 7:632. [PMID: 29167454 PMCID: PMC5802686 DOI: 10.1038/s41408-017-0005-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
|
28
|
Wang C, He H, Dou G, Li J, Zhang X, Jiang M, Li P, Huang X, Chen H, Li L, Yang D, Qi H. Ginsenoside 20(S)-Rh2 Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells: Role of Orphan Nuclear Receptor Nur77. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7687-7697. [PMID: 28793767 DOI: 10.1021/acs.jafc.7b02299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ginsenoside 20(S)-Rh2 has been shown to induce apoptosis and differentiation of acute myeloid leukemia (AML) cells. However, the underlying molecular mechanisms are not fully understood. In our study, 20(S)-Rh2 induced the expression of orphan nuclear receptor Nur77 and death receptor proteins Fas, FasL, DR5, and TRAIL, as well as the cleavage of caspase 8 and caspase 3 in HL-60 cells. Importantly, shNur77 attenuated 20(S)-Rh2-induced apoptosis and Fas and DR5 expression. Meanwhile, 20(S)-Rh2 promoted Nur77 translocation from the nucleus to mitochondria and enhanced the interaction between Nur77 and Bcl-2, resulting in the exposure of the BH3 domain of Bcl-2 and activation of Bax. Furthermore, 20(S)-Rh2 promoted the differentiation of HL-60 cells as evidenced by Wright-Giemsa staining, NBT reduction assay, and detection of the myeloid differentiation marker CD11b by flow cytometry. Notably, shNur77 reversed 20(S)-Rh2-mediated HL-60 differentiation. Additionally, 20(S)-Rh2 also exhibited an antileukemic effect and induced Nur77 expression in NOD/SCID mice with the injection of HL-60 cells into the tail vein. Together, our studies suggest that the Nur77-mediated signaling pathway is highly involved in 20(S)-Rh2-induced apoptosis and differentiation of AML cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 8/genetics
- Caspase 8/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Ginsenosides/pharmacology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Nude
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Guojun Dou
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica , 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Xiaobo Huang
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Hongxi Chen
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica , 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
29
|
Delgado E, Boisen MM, Laskey R, Chen R, Song C, Sallit J, Yochum ZA, Andersen CL, Sikora MJ, Wagner J, Safe S, Elishaev E, Lee A, Edwards RP, Haluska P, Tseng G, Schurdak M, Oesterreich S. High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecol Oncol 2016; 141:348-356. [PMID: 26946093 DOI: 10.1016/j.ygyno.2016.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nuclear receptors (NRs) play a vital role in the development and progression of several cancers including breast and prostate. Using TCGA data, we sought to identify critical nuclear receptors in high grade serous ovarian cancers (HGSOC) and to confirm these findings using in vitro approaches. METHODS In silico analysis of TCGA data was performed to identify relevant NRs in HGSOC. Ovarian cancer cell lines were screened for NR expression and functional studies were performed to determine the significance of these NRs in ovarian cancers. NR expression was analyzed in ovarian cancer tissue samples using immunohistochemistry to identify correlations with histology and stage of disease. RESULTS The NR4A family of NRs was identified as a potential driver of ovarian cancer pathogenesis. Overexpression of NR4A1 in particular correlated with worse progression free survival. Endogenous expression of NR4A1 in normal ovarian samples was relatively high compared to that of other tissue types, suggesting a unique role for this orphan receptor in the ovary. Expression of NR4A1 in HGSOC cell lines as well as in patient samples was variable. NR4A1 primarily localized to the nucleus in normal ovarian tissue while co-localization within the cytoplasm and nucleus was noted in ovarian cancer cell lines and patient tissues. CONCLUSIONS NR4A1 is highly expressed in a subset of HGSOC samples from patients that have a worse progression free survival. Studies to target NR4A1 for therapeutic intervention should include HGSOC.
Collapse
MESH Headings
- Animals
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Female
- Genome
- Heterografts
- Humans
- Immunohistochemistry
- Mice
- Mice, SCID
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/biosynthesis
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Evan Delgado
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Michelle M Boisen
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Robin Laskey
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rui Chen
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chi Song
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Zachary A Yochum
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Courtney L Andersen
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Molecular Pharmacology Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew J Sikora
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jacob Wagner
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adrian Lee
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Robert P Edwards
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul Haluska
- Department of Oncology and Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - George Tseng
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Nur77 is involved in graft infiltrating T lymphocyte apoptosis in rat cardiac transplantation model. Pathol Res Pract 2015; 211:633-40. [DOI: 10.1016/j.prp.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
|