1
|
Niu S, Wu X, Hou Q, Luo G, Qu W, Zhao F, Wang G, Zhang F. Theoretical Kinetic Studies on Thermal Decomposition of Glycerol Trinitrate and Trimethylolethane Trinitrate in the Gas and Liquid Phases. J Phys Chem A 2023; 127:1283-1292. [PMID: 36715586 DOI: 10.1021/acs.jpca.2c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glycerol trinitrate (NG) and trimethylolethane trinitrate (TMETN), as typical nitrate esters, are important energetic plasticizers in solid propellants. With the aid of high-precision quantum chemical calculations, the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation theory and the transition state theory have been employed to investigate the decomposition kinetics of NG and TMETN in the gas phase (over the temperature range of 300-1000 K and pressure range of 0.01-100 atm) and liquid phase (using water as the solvent). The continuum solvation model based on solute electron density (SMD) was used to describe the solvent effect. The thermal decomposition mechanism is closely relevant to the combustion properties of energetic materials. The results show that the RO-NO2 dissociation channel overwhelmingly favors other reaction pathways, including HONO elimination for the decomposition of NG and TMETN in both the gas phase and liquid phase. At 500 K and 1 atm, the rate coefficient of gas phase decomposition of TMETN is 5 times higher than that of NG. Nevertheless, the liquid phase decomposition of TMETN is a factor of 5835 slower than that of NG at 500 K. The solvation effect caused by vapor pressure and solubility can be used to justify such contradictions. Our calculations provide detailed mechanistic evidence for the initial kinetics of nitrate ester decomposition in both the gas phase and liquid phase, which is particularly valuable for understanding the multiphase decomposition behavior and building detailed kinetic models for nitrate ester.
Collapse
Affiliation(s)
- Shiyao Niu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230029, China.,Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China.,Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Xiaoqing Wu
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China.,College of Information Engineering, China Jiliang University, Hangzhou, Zhejiang310018, China
| | - Qifeng Hou
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Guangda Luo
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Wengang Qu
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Fengqi Zhao
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Gongming Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Feng Zhang
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| |
Collapse
|
2
|
Tsyshevsky RV, Rashkeev SN, Kuklja MM. Control of Explosive Chemical Reactions by Optical Excitations: Defect-Induced Decomposition of Trinitrotoluene at Metal Oxide Surfaces. Molecules 2023; 28:molecules28030953. [PMID: 36770620 PMCID: PMC9920724 DOI: 10.3390/molecules28030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Interfaces formed by high energy density materials and metal oxides present intriguing new opportunities for a large set of novel applications that depend on the control of the energy release and initiation of explosive chemical reactions. We studied the role of structural defects at a MgO surface in the modification of electronic and optical properties of the energetic material TNT (2-methyl-1,3,5-trinitrobenzene, also known as trinitrotoluene, C7H5N3O6) deposited at the surface. Using density functional theory (DFT)-based solid-state periodic calculations with hybrid density functionals, we show how the control of chemical explosive reactions can be achieved by tuning the electronic structure of energetic compound at an interface with oxides. The presence of defects at the oxide surface, such as steps, kinks, corners, and oxygen vacancies, significantly affects interfacial properties and modifies electronic spectra and charge transfer dynamics between the oxide surface and adsorbed energetic material. As a result, the electronic and optical properties of trinitrotoluene, mixed with an inorganic material (thus forming a composite), can be manipulated with high precision by interactions between TNT and the inorganic material at composite interfaces, namely, by charge transfer and band alignment. Also, the electron charge transfer between TNT and MgO surface reduces the decomposition barriers of the energetic material. In particular, it is shown that surface structural defects are critically important in the photodecomposition processes. These results open new possibilities for the rather precise control over the decomposition initiation mechanisms in energetic materials by optical excitations.
Collapse
|
3
|
Muravyev NV, Gorn MV, Melnikov IN, Monogarov KA, Korsunskii BL, Dalinger IL, Pivkina AN, Kiselev VG. Autocatalytic decomposition of energetic materials: interplay of theory and thermal analysis in the study of 5-amino-3,4-dinitropyrazole thermolysis. Phys Chem Chem Phys 2022; 24:16325-16342. [PMID: 35758846 DOI: 10.1039/d1cp04663b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A reliable kinetic description of the thermal stability of energetic materials (EM) is very important for safety and storage-related problems. Among other pertinent issues, autocatalysis very often complicates the decomposition kinetics of EM. In the present study, the kinetics and decomposition mechanism of a promising energetic compound, 5-amino-3,4-dinitro-1H-pyrazole (5-ADP) were studied using a set of complementary experimental (e.g., differential scanning calorimetry in the solid state, melt, and solution along with advanced thermokinetic models, accelerating rate calorimetry, and evolved gas analysis) and theoretical techniques (CCSD(T)-F12 and DLPNO-CCSD(T) predictive quantum chemical calculations). The experimental study revealed that the strong acceleration of the decomposition rate of 5-ADP is caused by two factors: the progressive liquefaction of the sample directly observed using in situ optical microscopy, and the autocatalysis by reaction products. For the first time, the processing of the non-isothermal data was performed with a formal Manelis-Dubovitsky kinetic model that accounts for both factors. With the aid of quantum chemical calculations, we have rationalized the autocatalysis present in the formal kinetic models at the molecular level. Theory revealed an unusual primary decomposition channel of 5-ADP, viz., the two subsequent sigmatropic H-shifts in the pyrazole ring followed by the C-NO2 bond scission yielding a pyrazolyl and nitrogen dioxide radicals as simple primary products. Moreover, we found the secondary reactions of the latter radical with the 5-ADP to be kinetically unimportant. On the contrary, the substituted pyrazolyl radical turned out to undergo a facile addition to 5-ADP, followed by a fast exothermic elimination of another ˙NO2 species. We believe the latter process to contribute remarkably to the observed autocatalytic behavior of 5-ADP. Most importantly, the calculations provide detailed mechanistic evidence complementing the thermoanalytical experiment and formal kinetic models.
Collapse
Affiliation(s)
- Nikita V Muravyev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Margarita V Gorn
- Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia.,Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Igor N Melnikov
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Konstantin A Monogarov
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Boris L Korsunskii
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Igor L Dalinger
- Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Ave., 119991 Moscow, Russia
| | - Alla N Pivkina
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Vitaly G Kiselev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia. .,Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia.,Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Recruiting Perovskites to Degrade Toxic Trinitrotoluene. MATERIALS 2021; 14:ma14237387. [PMID: 34885550 PMCID: PMC8658843 DOI: 10.3390/ma14237387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
Everybody knows TNT, the most widely used explosive material and a universal measure of the destructiveness of explosions. A long history of use and extensive manufacture of toxic TNT leads to the accumulation of these materials in soil and groundwater, which is a significant concern for environmental safety and sustainability. Reliable and cost-efficient technologies for removing or detoxifying TNT from the environment are lacking. Despite the extreme urgency, this remains an outstanding challenge that often goes unnoticed. We report here that highly controlled energy release from explosive molecules can be accomplished rather easily by preparing TNT-perovskite mixtures with a tailored perovskite surface morphology at ambient conditions. These results offer new insight into understanding the sensitivity of high explosives to detonation initiation and enable many novel applications, such as new concepts in harvesting and converting chemical energy, the design of new, improved energetics with tunable characteristics, the development of powerful fuels and miniaturized detonators, and new ways for eliminating toxins from land and water.
Collapse
|
5
|
Zhao Y, Mei Z, Zhao FQ, Xu SY, Ju XH. Thermal Decomposition Mechanism of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane Accelerated by Nano-Aluminum Hydride (AlH 3): ReaxFF-Lg Molecular Dynamics Simulation. ACS OMEGA 2020; 5:23193-23200. [PMID: 32954170 PMCID: PMC7495736 DOI: 10.1021/acsomega.0c02968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
ReaxFF-low-gradient reactive force field with CHONAl parameters is used to simulate thermal decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and AlH3 composite. Perfect AlH3 and surface-passivated AlH3 particles were constructed to mix with HMX. The simulation results indicate HMX is adsorbed on the surface of particles to form O-Al and N-Al bonds. The decomposition of HMX and AlH3 composite is an exothermic reaction without energy barrier, but the decomposition of pure HMX needs to overcome the energy barrier of 133.57 kcal/mol. Active nano-AlH3 causes HMX to decompose rapidly at low temperature, and the primary decomposition pathway is the rupture of N-O and C-N bonds. Adiabatic simulation shows that the energy release and temperature increase of HMX/AlH3 is much larger than those of the HMX system. Surface-passivated AlH3 particles only affect the initial decomposition rate of HMX. In HMX and AlH3 composites, the strong attraction of Al in AlH3 to O and the activation of the intermediate reaction by H2 cause HMX to decompose rapidly. The final decomposition products of pure HMX are H2O, N2, and CO2, and those of HMX/AlH3 are H2O, N2, and Al-containing clusters dominated by C-Al. The final gas production shows that the specific impulse of HMX/AlH3 is larger than that of HMX.
Collapse
Affiliation(s)
- Ying Zhao
- Key
Laboratory of Soft Chemistry and Functional Materials of MOE, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, P. R. China
| | - Zheng Mei
- Key
Laboratory of Soft Chemistry and Functional Materials of MOE, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, P. R. China
| | - Feng-Qi Zhao
- Science
and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian 710065, P. R. China
| | - Si-Yu Xu
- Science
and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian 710065, P. R. China
| | - Xue-Hai Ju
- Key
Laboratory of Soft Chemistry and Functional Materials of MOE, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
6
|
Abstract
This work is a study of 5-amino-3-nitro-1,2,4-triazole (ANTA), 3-nitro-1,2,4-triazol-5-one (NTO), and nitrated derivatives of ANTA and NTO. RDX and TNT were studied for comparison. ANTA and NTO are low-sensitive high explosives with detonation properties comparable to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). We showed previously that nitrated NTO and ANTA compounds, when used in a glycidyl azide polymer (GAP) matrix in rocket propellants, could give impulses above 2600 m/s and that the oxygen balance is positive. If used in aluminized explosives, the heat of detonation may be increased to a practical level significantly above RDX/aluminum compositions. Here, we use two different methods for sensitivity and two density functional theory functionals, B3LYP and M06-2X with the 6-31G(d) basis set, together with the complete basis set method CBS-4M. Calculations indicate that most of the nitrated derivatives have nearly equal sensitivity to RDX. Significantly different bond dissociation energies in the nitrimino functional group are predicted, although most models give much the same result.
Collapse
|
7
|
Zeman S, Jungová M. Sensitivity and Performance of Energetic Materials. PROPELLANTS EXPLOSIVES PYROTECHNICS 2016. [DOI: 10.1002/prep.201500351] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Svatopluk Zeman
- Institute of Energetic Materials Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Marcela Jungová
- Institute of Energetic Materials Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| |
Collapse
|
8
|
Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials. Molecules 2016; 21:236. [PMID: 26907231 PMCID: PMC6273078 DOI: 10.3390/molecules21020236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/16/2022] Open
Abstract
This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.
Collapse
|
9
|
Kuklja MM, Tsyshevsky RV, Sharia O. Effect of Polar Surfaces on Decomposition of Molecular Materials. J Am Chem Soc 2014; 136:13289-302. [DOI: 10.1021/ja506297e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maija M. Kuklja
- Materials Science and Engineering
Department, University of Maryland, College Park, Maryland 20742, United States
| | - Roman V. Tsyshevsky
- Materials Science and Engineering
Department, University of Maryland, College Park, Maryland 20742, United States
| | - Onise Sharia
- Materials Science and Engineering
Department, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
3-(4-Amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole. MOLBANK 2014. [DOI: 10.3390/m824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|