1
|
Ramesh P, Nisar M, Neha, Ammankallu S, Babu S, Nandakumar R, Abhinand CS, Prasad TSK, Codi JAK, Raju R. Delineating protein biomarkers for gastric cancers: A catalogue of mass spectrometry-based markers and assessment of their suitability for targeted proteomics applications. J Proteomics 2024; 306:105262. [PMID: 39047941 DOI: 10.1016/j.jprot.2024.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Gastric cancer (GC) is a global health concern. To facilitate improved management of GCs, protein biomarkers have been identified through mass spectrometry-based proteomics platforms. In order to exhibit clinical utility of such data, we congregated over 6800 differentially regulated proteins in GCs from proteomics studies and recorded the mass spectrometry platforms, association of the protein with infectious agents, protein identifiers, sample size and clinical characters of samples used with details on validation. Development of targeted proteomics methods is the cornerstone for pursuing these markers into clinical utility. Therefore, we developed Protein Biomarker Matrix for Gastric Cancer (PBMGC), a simple catalogue of robustness of each protein. This analysis yielded the identification of robust tissue, serum, and urine diagnostic and prognostic protein biomarker panels which can be further tested for their clinical utility. We also ascertained proteotypic tryptic peptides of 5631 proteins suitable for developing multiple reaction monitoring (MRM) assays. Extensive characterization of these peptides was carried out to record peptide ions, mass/charge and enhanced specific peptide features. With the vision of catering to proteomics researchers, the data generated through this analysis has been catalogued at Gastric Cancer Proteomics DataBase (GCPDB) (https://ciods.in/gcpdb/). Users can browse and download the data and improve GCPDB by submitting recently published data. SIGNIFICANCE: Mass spectrometry-based proteomics platforms have accumulated substantial data on proteins differentially regulated in gastric cancer (GC) clinical samples. The utility of such data in clinical applications is limited by search for suitable biomarker panels for assessment of GCs. We assembled over 6800 differentially regulated proteins in GCs from proteomics studies and recorded the corresponding details including mass spectrometry platforms, status on the association of the protein with infectious agents, protein identifiers from different databases, sample size and clinical characters of samples used in test and control conditions along with details on their validation. Towards the vision of utilizing these markers in clinical assays, Protein Biomarker Matrix for Gastric Cancer (PBMGC) was developed and clinically relevant multi-protein panels were identified. We also demonstrated identification and characterization of tryptic proteotypic tryptic peptides of 5631 proteins biomarkers of GCs which are suitable for development of MRM assays in a SCIEX QTRAP instrument. Aimed to caterproteomics researchers, the data generated through this analysis has been catalogued at Gastric Cancer Proteomics DataBase (GCPDB) (https://ciods.in/gcpdb/). The users can browse and download details on different markers and improve GCPDB by submitting recently published data. Such an analysis could lay a cornerstone for building more such resources or conduct such analysis in different clinical conditions to uptake and develop targeted proteomics as the method of choice for clinical applications.
Collapse
Affiliation(s)
- Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| | - Neha
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Revathy Nandakumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
2
|
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction. Ann N Y Acad Sci 2021; 1509:89-112. [PMID: 34766352 DOI: 10.1111/nyas.14708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Summer maize is frequently subjected to waterlogging damage because of increased and variable rainfall during the growing season. The application of 6-benzyladenine (6-BA) can effectively mitigate the waterlogging effects on plant growth and increase the grain yield of waterlogged summer maize. However, the mechanisms underlying this process and the involvement of 6-BA in relevant signal transduction pathways remain unclear. In this study, we explored the effects of 6-BA on waterlogged summer maize using a phosphoproteomic technique to better understand the mechanism by which summer maize growth improves following waterlogging. Application of 6-BA inhibited the waterlogging-induced increase in abscisic acid (ABA) content and increased the phosphorylation levels of proteins involved in ABA signaling; accordingly, stomatal responsiveness to exogenous ABA increased. In addition, the application of 6-BA had a long-term effect on signal transduction pathways and contributed to rapid responses to subsequent stresses. Plants primed with 6-BA accumulated more ethylene and jasmonic acid in response to subsequent waterlogging; accordingly, leaf SPAD, antioxidase activity, and root traits improved by 6-BA priming. These results suggest that the effects of 6-BA on hormone signal transduction pathways are anamnestic, which enables plants to show faster or stronger defense responses to stress.
Collapse
Affiliation(s)
- Juan Hu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baizhao Ren
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
3
|
Determination of Adenylate Nucleotides in Amphipod Gammarus fossarum by Ion-Pair Reverse Phase Liquid Chromatography: Possibilities of Positive Pressure Micro-Solid Phase Extraction. SEPARATIONS 2021. [DOI: 10.3390/separations8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adenine nucleotides—adenosine monophosphate, diphosphate, and triphosphate—are of utmost importance to all living organisms, where they play a critical role in the energy metabolism and are tied to allosteric regulation in various regulatory enzymes. Adenylate energy charge represents the precise relationship between the concentrations of adenosine monophosphate, diphosphate, and triphosphate and indicates the amount of metabolic energy available to an organism. The experimental conditions of adenylate extraction in freshwater amphipod Gammarus fossarum are reported here for the first time and are crucial for the qualitative and quantitative determination of adenylate nucleotides using efficient and sensitive ion-pair reverse phase LC. It was shown that amphipod calcified exoskeleton impeded the neutralization of homogenate. The highest adenylate yield was obtained by homogenization in perchloric acid and subsequent addition of potassium hydroxide and phosphate buffer to achieve a pH around 11. This method enables separation and accurate detection of adenylates. Our study provides new insight into the complexity of adenylate extraction and quantification that is crucial for the application of adenylate energy charge as a confident physiological measure of environmental stress and as a health index of G. fossarum.
Collapse
|
4
|
Huang B, Zhao Z, Zhao Y, Huang S. Protein arginine phosphorylation in organisms. Int J Biol Macromol 2021; 171:414-422. [PMID: 33428953 DOI: 10.1016/j.ijbiomac.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Protein arginine phosphorylation (pArg), a novel molecular switch, plays a key role in regulating cellular processes. The intrinsic acid lability, hot sensitivity, and hot-alkali instability of "high-energy" phosphoamidate (PN bond) in pArg, make the investigation highly difficult and challenging. Recently, the progress in identifying prokaryotic protein arginine kinase/phosphatase and assigning hundreds of pArg proteins and phosphosites has been made, which is arousing scientists' interest and passions. It shows that pArg is tightly connected to bacteria stress response and pathogenicity, and is probably implied in human diseases. In this review, we highlight the strategies for investigation of this mysterious modification and its momentous physiological functions, and also prospect for the potentiality of drugs development targeting pArg-relative pathways.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Zhixing Zhao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
5
|
Duan Z, Dou S, Liu Z, Li B, Yi B, Shen J, Tu J, Fu T, Dai C, Ma C. Comparative phosphoproteomic analysis of compatible and incompatible pollination in Brassica napus L. Acta Biochim Biophys Sin (Shanghai) 2020; 52:446-456. [PMID: 32268372 DOI: 10.1093/abbs/gmaa011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Self-incompatibility (SI) promotes outbreeding and prevents self-fertilization to promote genetic diversity in angiosperms. Several studies have been carried to investigate SI signaling in plants; however, protein phosphorylation and dephosphorylation in the fine-tuning of the SI response remain insufficiently understood. Here, we performed a phosphoproteomic analysis to identify the phosphoproteins in the stigma of self-compatible 'Westar' and self-incompatible 'W-3' Brassica napus lines. A total of 4109 phosphopeptides representing 1978 unique protein groups were identified. Moreover, 405 and 248 phosphoproteins were significantly changed in response to SI and self-compatibility, respectively. Casein kinase II (CK II) phosphorylation motifs were enriched in self-incompatible response and identified 127 times in 827 dominant SI phosphorylation residues. Functional annotation of the identified phosphoproteins revealed the major roles of these phosphoproteins in plant-pathogen interactions, cell wall modification, mRNA surveillance, RNA degradation, and plant hormone signal transduction. In particular, levels of homolog proteins ABF3, BKI1, BZR2/BSE1, and EIN2 were significantly increased in pistils pollinated with incompatible pollens. Abscisic acid and ethephon treatment partially inhibited seed set, while brassinolide promoted pollen germination and tube growth in SI response. Collectively, our results provided an overview of protein phosphorylation during compatible/incompatible pollination, which may be a potential component of B. napus SI responses.
Collapse
Affiliation(s)
- Zhiqiang Duan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiquan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|