1
|
Wright ZM, Butay KJ, Krahn JM, Wilson IM, Gabel SA, DeRose EF, Hissein IS, Williams JG, Borgnia MJ, Frazier MN, Mueller GA, Stanley RE. Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates. Nat Commun 2025; 16:391. [PMID: 39755678 DOI: 10.1038/s41467-024-55682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15. Through a combination of nuclease assays, 19F NMR spectroscopy, mass spectrometry, and single particle cryo-EM, we determine that Nsp15 acts most efficiently on unpaired Us, particularly those that are already flipped. Across sequence contexts, we find Nsp15's cleavage efficiency to be directly related to that U's tendency to spontaneously flip. Overall, our findings unify previous characterizations of Nsp15's cleavage preferences, and suggest that activity of Nsp15 during infection is partially driven by bulged or otherwise relatively accessible Us that appear at strategic positions in the viral RNA.
Collapse
Affiliation(s)
- Zoe M Wright
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Isha M Wilson
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Howard University College of Medicine, Washington, DC, 20059, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Israa S Hissein
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Meredith N Frazier
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George St, Charleston, SC, 29424, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
2
|
Prosser RS, Alonzi NA. Discerning conformational dynamics and binding kinetics of GPCRs by 19F NMR. Curr Opin Pharmacol 2023; 72:102377. [PMID: 37612172 DOI: 10.1016/j.coph.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 08/25/2023]
Abstract
19F NMR provides a way of monitoring conformational dynamics of G-protein coupled receptors (GPCRs) from the perspective of an ensemble. While X-ray crystallography provides exquisitely resolved high-resolution structures of specific states, it generally does not recapitulate the true ensemble of functional states. Fluorine (19F) NMR provides a highly sensitive spectroscopic window into the conformational ensemble, generally permitting the direct quantification of resolvable states. Moreover, straightforward T1- and T2-based relaxation experiments allow for the study of fluctuations within a given state and exchange between states, on timescales spanning nanoseconds to seconds. Conveniently, most biological systems are free of fluorine. Thus, via fluorinated amino acid analogues or thiol-reactive fluorinated tags, F or CF3 reporters can be site specifically incorporated into proteins of interest. In this review, fluorine labeling protocols and 19F NMR experiments will be presented, from the perspective of small molecule NMR (i.e. drug or small molecule interactions with receptors) or macromolecular NMR (i.e. conformational dynamics of receptors and receptor-G-protein complexes).
Collapse
Affiliation(s)
- R S Prosser
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada; Biochemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada.
| | - Nicholas A Alonzi
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
3
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
4
|
Varner TA, Mohamed-Raseek N, Miller AF. Assignments of 19F NMR resonances and exploration of dynamics in a long-chain flavodoxin. Arch Biochem Biophys 2021; 703:108839. [PMID: 33727041 DOI: 10.1016/j.abb.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Flavodoxin is a small protein that employs a non-covalently bound flavin to mediate single-electron transfer at low potentials. The long-chain flavodoxins possess a long surface loop that is proposed to interact with partner proteins. We have incorporated 19F-labeled tyrosine in long-chain flavodoxin from Rhodopseudomonas palustris to gain a probe of possible loop dynamics, exploiting the presence of a Tyr in the long loop in addition to Tyr residues near the flavin. We report 19F resonance assignments for all four Tyrs, and demonstration of a pair of resonances in slow exchange, both corresponding to a Tyr adjacent to the flavin. We also provide evidence for dynamics affecting the Tyr in the long loop. Thus, we show that 19F NMR of 19F-Tyr labeled flavodoxin holds promise for monitoring possible changes in conformation upon binding to partner proteins.
Collapse
Affiliation(s)
- Taylor A Varner
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | | |
Collapse
|
5
|
Ursu A, Wang KW, Bush JA, Choudhary S, Chen JL, Baisden JT, Zhang YJ, Gendron TF, Petrucelli L, Yildirim I, Disney MD. Structural Features of Small Molecules Targeting the RNA Repeat Expansion That Causes Genetically Defined ALS/FTD. ACS Chem Biol 2020; 15:3112-3123. [PMID: 33196168 DOI: 10.1021/acschembio.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), collectively named c9ALS/FTD, are triggered by hexanucleotide GGGGCC repeat expansions [r(G4C2)exp] within the C9orf72 gene. In these diseases, neuronal loss occurs through an interplay of deleterious phenotypes, including r(G4C2)exp RNA gain-of-function mechanisms. Herein, we identified a benzimidazole derivative, CB096, that specifically binds to a repeating 1 × 1 GG internal loop structure, 5'CGG/3'GGC, that is formed when r(G4C2)exp folds. Structure-activity relationship (SAR) studies and molecular dynamics (MD) simulations were used to define the molecular interactions formed between CB096 and r(G4C2)exp that results in the rescue of disease-associated pathways. Overall, this study reveals a unique structural feature within r(G4C2)exp that can be exploited for the development of lead medicines and chemical probes.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jared T. Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Chu H, Perea W, Greenbaum NL. Role of the central junction in folding topology of the protein-free human U2-U6 snRNA complex. RNA (NEW YORK, N.Y.) 2020; 26:836-850. [PMID: 32220895 PMCID: PMC7297123 DOI: 10.1261/rna.073379.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 06/02/2023]
Abstract
U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have shown that the protein-free U2-U6 snRNA complex adopts two conformations in equilibrium, characterized by four and three helices surrounding a central junction. The four-helix conformer is strongly favored in the in vitro protein-free state, but the three-helix conformer predominates in spliceosomes. To analyze the role of the central junction in positioning elements forming the active site, we derived three-dimensional models of the two conformations from distances measured between fluorophores at selected locations in constructs representing the protein-free human U2-U6 snRNA complex by time-resolved fluorescence resonance energy transfer. Data describing four angles in the four-helix conformer suggest tetrahedral geometry; addition of Mg2+ results in shortening of the distances between neighboring helices, indicating compaction of the complex around the junction. In contrast, the three-helix conformer shows a closer approach between helices bearing critical elements, but the addition of Mg2+ widens the distance between them; thus in neither conformer are the critical helices positioned to favor the proposed triplex interaction. The presence of Mg2+ also enhances the fraction of the three-helix conformer, as does incubation with the Prp19-related protein RBM22, which has been implicated in the remodeling of the U2-U6 snRNA complex to render it catalytically active. These data suggest that although the central junction assumes a significant role in orienting helices, spliceosomal proteins and Mg2+ facilitate formation of the catalytically active conformer.
Collapse
Affiliation(s)
- Huong Chu
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - William Perea
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
| | - Nancy L Greenbaum
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
7
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
8
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
9
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Nakamura S, Yang H, Hirata C, Kersaudy F, Fujimoto K. Development of 19F-NMR chemical shift detection of DNA B–Z equilibrium using 19F-NMR. Org Biomol Chem 2017; 15:5109-5111. [DOI: 10.1039/c7ob00706j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The DNA conformational changes such as B-formed, Z-formed, and single stranded DNA, were detected in one of 19F-NMR measurements using a fluorine-labeled nucleobase.
Collapse
Affiliation(s)
- S. Nakamura
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - H. Yang
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - C. Hirata
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - F. Kersaudy
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - K. Fujimoto
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| |
Collapse
|