1
|
Moerman A, De Waele JJ, Boelens J. An overview of point-of-care testing for infections in critically ill patients. Expert Rev Mol Diagn 2024; 24:193-200. [PMID: 38414348 DOI: 10.1080/14737159.2024.2322146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Molecular diagnostic systems for point-of-care (POC) testing are nowadays routinely used and are part of many labs. Although often intended for bedside use outside of the microbiology lab, there is still room for expansion. AREAS COVERED This review discusses the two techniques that are currently the most widespread, real-time polymerase-chain reaction (RT-PCR) and loop-mediated isothermal amplification (LAMP). An overview is provided of the various manufacturers and products as well as the evidence and current use in clinical practice. The article further sheds light on some newer techniques, such as CRISPR-based diagnostics and lab-on-a-chip, which are still in development. EXPERT OPINION With many new platforms and techniques still in the pipeline and their potential currently not yet fully exploited, we expect the use of molecular POC testing to increase in the years to come. However, even when used in hospital - in lab, the main advantages of the tests being fast and easy to perform already provide significant benefits in terms of patient outcome.
Collapse
Affiliation(s)
- Alena Moerman
- Department of Medical microbiology, Ghent University Hospital, Gent, Belgium
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Gent, Belgium
| | - Jerina Boelens
- Department of Medical microbiology, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
3
|
Yang H, Chen Z, Cao X, Li Z, Stavrakis S, Choo J, deMello AJ, Howes PD, He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal Bioanal Chem 2018; 410:7019-7030. [PMID: 30155705 DOI: 10.1007/s00216-018-1335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A variety of automated sample-in-answer-out systems for in vitro molecular diagnostics have been presented and even commercialized. Although efficient in operation, they are incapable of quantifying targets, since quantitation based on analog analytical methods (via standard curve analysis) is complex, expensive, and challenging. To address this issue, herein, we describe an integrated sample-in-digital-answer-out (SIDAO) diagnostic system incorporating DNA extraction and digital recombinase polymerase amplification, which enables rapid and quantitative nucleic acid analysis from bodily fluids within a disposable cartridge. Inside the cartridge, reagents are pre-stored in sterilized tubes, with an automated pipetting module allowing facile liquid transfer. For digital analysis, we fabricate a simple, single-layer polydimethylsiloxane microfluidic device and develop a novel and simple sample compartmentalization strategy. Sample solution is partitioned into an array of 40,044 fL-volume microwells by sealing the microfluidic device through the application of mechanical pressure. The entire analysis is performed in a portable, fully automated instrument. We evaluate the quantitative capabilities of the system by analyzing Mycobacterium tuberculosis genomic DNA from both spiked saliva and serum samples, and demonstrate excellent analytical accuracy and specificity. This SIDAO system provides a promising diagnostic platform for quantitative nucleic acid testing at the point-of-care. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Haowen Yang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Zhu Chen
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Sa-1-dong 1271, Ansan, 15588, South Korea
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Nongyue He
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|