1
|
Silva AL, Colaço MV, Liu L, Xing Y, Carvalho NMF. Electrocatalysis of Oxygen Evolution Reaction Promoted by CoNiMn Films Synthesized by Electrodeposition. ACS OMEGA 2024; 9:43503-43512. [PMID: 39493998 PMCID: PMC11525539 DOI: 10.1021/acsomega.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
Recently, efforts have been made to address the environmental damage caused by fossil-fuel-based primary energy sources. Interest in efficient technologies for converting and storing energy using renewable sources, especially sunlight, has increased, with the aim of replicating the natural photosynthesis process. However, artificial photosynthesis faces challenges with unfavorable kinetics and thermodynamics, requiring the use of stable catalysts for the hydrogen evolution (HER) and oxygen evolution (OER) reactions to generate H2 and O2, respectively. OER is the most prohibitive of the half-reactions by the highly sluggish kinetics. Mixed oxides, particularly those based on first-row transition metals, have shown promising results as catalysts for the OER. This work reports the synthesis of CoNiMn oxide via electrodeposition on fluoride tin oxide followed by electrochemical activation. This approach seeks to explore the synergistic effect between the elements and to produce a catalyst with superior efficiency and stability for the electrocatalysis of the OER compared to the monometallic and bimetallic oxides. The CoNiMn film was structurally and electrochemically characterized. The electrodeposited CoNiMn hybrid films demonstrated low overpotentials compared with standard OER electrocatalysts, with CoNiMn films outperforming all single and bimetallic oxide films. The activated CoNiMn film required an overpotential of 100 mV at 10 mA cm-2 (430 mV at 25 mA cm-2) and Tafel slope of 58 mV dec-1. The film was active for 15 h at 100 mA cm-2 and showed no significant change in morphology and structure after the chronopotentiometry, indicating that it is a promising and cost-effective alternative to enhance the OER activity using abundant elements.
Collapse
Affiliation(s)
- Ana Luisa Silva
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Química, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-900 Rio de Janeiro, Brasil
| | - Marcos V. Colaço
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Física, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-013 Rio de Janeiro, Brasil
| | - Liying Liu
- Centro
Brasileiro de Pesquisas Físicas (CBPF), Rua Doutor Xavier Sigaud 150, Rio de Janeiro, 22290180 Rio de Janeiro, Brasil
| | - Yutao Xing
- Universidade
Federal Fluminense, Instituto de Física, Niterói, 24210-346 Rio de Janeiro, Brasil
| | - Nakédia M. F. Carvalho
- Universidade
do Estado do Rio de Janeiro (UERJ), Instituto de Química, Rua São Francisco Xavier,
524, Rio de Janeiro, 20550-900 Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Anoy MMI, Gelston S, Mohamed A, Flurin L, Raval YS, Greenwood-Quaintance K, Patel R, Lewandowski Z, Beyenal H. Hypochlorous acid produced at the counter electrode inhibits catalase and increases bactericidal activity of a hydrogen peroxide generating electrochemical bandage. Bioelectrochemistry 2022; 148:108261. [PMID: 36115186 PMCID: PMC10080710 DOI: 10.1016/j.bioelechem.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Previously, an electrochemical bandage (e-bandage) that uses a three-electrode system to produce hydrogen peroxide (H2O2) electrochemically on its working electrode was developed as a potential strategy for treating biofilms; it showed activity in reducing biofilms in an agar biofilm model. Xanthan gum-based hydrogel, including NaCl, was used as the electrolyte. While H2O2 generated at the working electrode in the vicinity of a biofilm is a main mechanism of activity, the role of the counter electrode was not explored. The goal of this research was to characterize electrochemical reactions occurring on the counter electrode of the e-bandage. Counter electrode potential varied between 1.2 and 1.5 VAg/AgCl; ∼125 µM hypochlorous acid (HOCl) was generated within 24 h in the e-bandage system. When HOCl was not produced on the counter electrode (achieved by removing NaCl from the hydrogel), reduction of Acinetobacter baumannii BAA-1605 biofilm was 1.08 ± 0.38 log10 CFU/cm2 after 24 h treatment, whereas when HOCl was produced, reduction was 3.87 ± 1.44 log10 CFU/cm2. HOCl inhibited catalase activity, abrogating H2O2 decomposition. In addition to H2O2 generation, the previously described H2O2-generating e-bandage generates HOCl on the counter electrode, enhancing its biocidal activity.
Collapse
Affiliation(s)
- Md Monzurul Islam Anoy
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| | - Suzanne Gelston
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| | - Laure Flurin
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA.
| | - Yash S Raval
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA; Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Zbigniew Lewandowski
- Center for Biofilm Engineering, Montana State University-Bozeman, Bozeman, MT, USA.
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
|