1
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Ayala-Cosme EG, Yang D, Vences K, Davis LO, Borgini M. State-of-the-Art Nrf2 Inhibitors: Therapeutic Opportunities in Non-Cancer Diseases. ChemMedChem 2024; 19:e202400377. [PMID: 39083752 DOI: 10.1002/cmdc.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a cytoprotective transcription factor that induces the transcription of genes responsible for the cell's response to oxidative stress. While Nrf2 activation has led to the development of clinically relevant therapeutics, the oncogenic role of Nrf2 in the proliferation of cancer cells has underscored the complex nature of Nrf2 and the necessity for the development of Nrf2 inhibitors. Although the application of Nrf2 inhibitors appears limited as anticancer agents, recent studies have begun to pinpoint the impairment of autophagy in diseases as a cellular marker that shifts Nrf2 from a protective to a deleterious state. Therefore, the cytoplasmic accumulation of Nrf2 can lead to the accumulation of lipid hydroperoxides and, ultimately, to ferroptosis. However, some studies aimed at elucidating the role of Nrf2 in non-cancer diseases have yielded conflicting results, attributed to differences in approaches used to inhibit or activate Nrf2, as well as variations in in vitro and/or in vivo disease models. Overall, these results highlight the necessity for a deeper evaluation of Nrf2's role in diseases, especially chronic diseases. In this review, we discuss diseases where Nrf2 inhibition holds potential for beneficial therapeutic effects and summarize recently reported Nrf2 inhibitors exploiting medicinal chemistry approaches suitable for targeting transcription factors like Nrf2.
Collapse
Affiliation(s)
- Emil G Ayala-Cosme
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Deborah Yang
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Kyara Vences
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Lindsey O Davis
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Matteo Borgini
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| |
Collapse
|
3
|
Bramwell LR, Gould SJ, Davies M, McMullan C, Trusler EC, Harries LW. An Evaluation of the Replacement of Animal-derived Biomaterials in Human Primary Cell Culture. Altern Lab Anim 2024; 52:247-260. [PMID: 39121342 DOI: 10.1177/02611929241269004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The likelihood that potential new drugs will successfully navigate the current translational pipeline is poor, with fewer than 10% of drug candidates making this transition successfully, even after their entry into clinical trials. Prior to this stage, candidate drugs are typically evaluated by using models of increasing complexity, beginning with basic in vitro cell culture studies and progressing through to animal studies, where many of these candidates are lost due to lack of efficacy or toxicology concerns. There are many reasons for this poor translation, but interspecies differences in functional and physiological parameters undoubtedly contribute to the problem. Improving the human-relevance of early preclinical in vitro models may help translatability, especially when targeting more nuanced species-specific cell processes. The aim of the current study was to define a set of guidelines for the effective transition of human primary cells of multiple lineages to more physiologically relevant, translatable, animal-free in vitro culture conditions. Animal-derived biomaterials (ADBs) were systematically replaced with non-animal-derived alternatives in the in vitro cell culture systems, and the impact of the substitutions subsequently assessed by comparing the kinetics and phenotypes of the cultured cells. ADBs were successfully eliminated from primary human dermal fibroblast, uterine fibroblast, pulmonary fibroblast, retinal endothelial cell and peripheral blood mononuclear cell culture systems, and the individual requirements of each cell subtype were defined to ensure the successful transition toward growth under animal-free culture conditions. We demonstrate that it is possible to transition ('humanise') a diverse set of human primary cell types by following a set of simple overarching principles that inform the selection, and guide the evaluation of new, improved, human-relevant in vitro culture conditions.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Samantha J Gould
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Merlin Davies
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Conor McMullan
- Islet Biology Group (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Emily C Trusler
- Technical Services, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Bobier C, Reinhardt N, Pawlowski K. Animal rights, animal research, and the need to reimagine science. New Bioeth 2024; 30:63-76. [PMID: 38182130 DOI: 10.1080/20502877.2023.2300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
What would it look like for researchers to take non-human animal rights seriously? Recent discussions foster the impression that scientific practice needs to be reformed to make animal research ethical: just as there is ethically rigorous human research, so there can be ethically rigorous animal research. We argue that practically little existing animal research would be ethical and that ethical animal research is not scalable. Since animal research is integral to the existing scientific paradigm, taking animal rights seriously requires a radical, wholesale reimagining of science.Trial registration: ClinicalTrials.gov identifier: NCT05340426.
Collapse
Affiliation(s)
- Christopher Bobier
- Department of Theology & Philosophy, Saint Mary's University of Minnesota, Winona, MN, USA
| | - Noah Reinhardt
- Business Department, University of Mary, Bismarck, ND, USA
| | - Kate Pawlowski
- Public Health, Saint Mary's University of Minnesota, Winona, MN, USA
| |
Collapse
|
5
|
Kim J, Kim Y, Song Y, Kim TJ, Lee SH, Kim HJ. Indoor particulate matter induces epigenetic changes in companion atopic dogs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115544. [PMID: 37827097 DOI: 10.1016/j.ecoenv.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The prevalence of atopic dermatitis (AD) is increasing and environmental factors are receiving attention as contributing causes. Indoor air pollutants (IAPs), especially particulate matter (PM) can alter epigenetic markers, DNA methylation (DNAm). Although DNAm-mediated epigenetic changes have been reported to modulate the pathogenesis of AD, their role at high risk of exposure to PM is still unclear. The study investigated the effects of exposure to IAPs in the development of AD and epigenetic changes through DNAm in companion atopic dogs that share indoor environment with their owners. Dogs were divided into two groups: AD (n = 47) and controls (n = 21). The IAPs concentration in each household was measured for 48 h, and a questionnaire on the residential environment was completed in all dogs. Eighteen dogs with AD and 12 healthy dogs were selected for DNAm analysis. In addition, clinical and immunological evaluations were conducted. The concentrations of PM2.5, PM10, and volatile organic compounds (VOCs) were significantly higher in the AD group. Moreover, there were more significant methylation differences in the LDLRAD4, KHSRP, and CTDSP2 genes in connection with PM10 in AD group compared to the controls. The degree of methylation of the LDLRAD4 and CTDSP2 genes was also correlated with related protein productions. The present study revealed that exposure to high indoor PM can cause epigenetic development of AD by methylation of the LDLRAD4, KHSRP, and CTDSP2 genes in dogs. Under the concept of "One Health," improving indoor environments should be considered to prevent the development of AD.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yeji Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yunji Song
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Tae Jung Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ha-Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
6
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
7
|
Moraes GS, Albach T, Sugio CY, de Oliveira FB, Neppelenbroek KH, Urban VM. Experimental animal models for denture stomatitis: A methodological review. Lab Anim 2022; 56:331-343. [PMID: 35072576 DOI: 10.1177/00236772211069249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Denture stomatitis is the most prevalent form of oral candidiasis and the most frequent oral lesion in removable prosthesis wearers. It is characterized by an inflammatory response of the denture-bearing mucosa, especially the palatal mucosa, and its clinical signs include chronic edema and erythema, and papillary hyperplasia. Despite having a multifactorial etiology, its main etiological agent is the infection by Candida albicans. Given its high treatment failure rates, an in vivo model of denture stomatitis should be established to test alternative treatments. The aim of this study is to review the existing denture stomatitis models and to provide an overview of the main methodological differences between them. Over the last 40 years, different animal models were developed in order to study denture stomatitis etiopathogenesis and to assess novel therapies. Many approaches, including the use of antibiotics and immunosuppressors, have to be further investigated in order to establish which protocol is more appropriate and effective for the development of an animal model of denture stomatitis.
Collapse
Affiliation(s)
- Gustavo S Moraes
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Thaís Albach
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Carolina Yc Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Fabio B de Oliveira
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Karin H Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Vanessa M Urban
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| |
Collapse
|
8
|
Anastasi F, Dilillo M, Pellegrini D, McDonnell LA. Isolation and Proteomic Analysis of Mouse Serum Small Extracellular Vesicles for Individual Subject Analysis. Methods Mol Biol 2022; 2504:41-54. [PMID: 35467278 DOI: 10.1007/978-1-0716-2341-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteomics characterization of blood and circulating material has been extensively explored for the study of pathological states. In particular, circulating small extracellular vesicles (sEV, diameter: 30-150 nm) are known to play an important role in intercellular communication processes, and proteomics profiling has been explored to develop minimally invasive assays for disease monitoring and diagnosis. Due to the genetic and physiological similarities between the two species, and also on account of their shorter life span and rapid disease progression, rodent models are the most commonly used animal model for many human diseases. Such models have provided invaluable insight into the molecular mechanisms of disease progression, candidate drug efficacy, therapy monitoring, and biomarkers research.Longitudinal investigations, in which individuals are monitored over periods of time, are more able to resolve molecular changes during disease progression because they circumvent the inter-individual variation. Longitudinal investigations of rodent models are challenging because of the limited amount of blood that can be withdrawn at each time; the American Association of Veterinary Science stipulates that fortnightly sampling should be limited to a maximum of 10% of the total blood volume. For adult mice this corresponds to approximately 75 μL of serum. We developed an approach for the isolation and characterization of serum sEV proteins from just 50 μL of serum, for longitudinal studies of disease mouse models. This chapter describes in detail the steps and considerations involved in the sEV isolation, morphological characterization, and proteome profiling by mass spectrometry.
Collapse
Affiliation(s)
- Federica Anastasi
- NEST Laboratories, Scuola Normale Superiore, Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | | | - Davide Pellegrini
- NEST Laboratories, Scuola Normale Superiore, Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | | |
Collapse
|
9
|
Abstract
Laboratory mice have long been an invaluable tool in biomedical science and have made significant contributions in research into life-threatening diseases. However, the translation of research results from mice to humans often proves difficult due to the incomplete nature of laboratory animal-based research. Hence, there is increasing demand for complementary methods or alternatives to laboratory mice that can better mimic human physiological traits and potentially bridge the translational research gap. Under these circumstances, the natural/naturalized mice including “wild”, “dirty”, “wildling”, and “wilded” systems have been found to better reflect some aspects of human pathophysiology. Here, we discuss the pros and cons of the laboratory mouse system and contemplate how wild mice and wild microbiota are able to help in refining such systems to better mimic the real-world situation and contribute to more productive translational research.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Oliveira IM, Fernandes DC, Cengiz IF, Reis RL, Oliveira JM. Hydrogels in the treatment of rheumatoid arthritis: drug delivery systems and artificial matrices for dynamic in vitro models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:74. [PMID: 34156535 PMCID: PMC8219548 DOI: 10.1007/s10856-021-06547-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disorder that mostly affects the synovial joints and can promote both cartilage and bone tissue destruction. Several conservative treatments are available to relieve pain and control the inflammation; however, traditional drugs administration are not fully effective and present severe undesired side effects. Hydrogels are a very attractive platform as a drug delivery system to guarantee these handicaps are reduced, and the therapeutic effect from the drugs is maximized. Furthermore, hydrogels can mimic the physiological microenvironment and have the mechanical behavior needed for use as cartilage in vitro model. The testing of these advanced delivery systems is still bound to animal disease models that have shown low predictability. Alternatively, hydrogel-based human dynamic in vitro systems can be used to model diseases, bypassing some of the animal testing problems. RA dynamic disease models are still in an embryonary stage since advances regarding healthy and inflamed cartilage models are currently giving the first steps regarding complexity increase. Herein, recent studies using hydrogels in the treatment of RA, featuring different hydrogel formulations are discussed. Besides, their use as artificial extracellular matrices in dynamic in vitro articular cartilage is also reviewed.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Diogo Castro Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| |
Collapse
|