1
|
Sokolova EV, Kravchenko AO, Sergeeva NV, Kalinovsky AI, Glazunov VP, Bogdanovich LN, Yermak IM. Effect of red seaweed sulfated galactans on initial steps of complement activation in vitro. Carbohydr Polym 2021; 254:117251. [PMID: 33357847 PMCID: PMC7577181 DOI: 10.1016/j.carbpol.2020.117251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/04/2022]
Abstract
Red algal galactans can participate in cell surface biology involving complement system. Polysaccharides inhibit C3 binding to LPS with direct dependence on degree of sulfation. Degree of sulfation mattered in carrageenans capacity to reduce C4 binding to mannan. C4 binding to antibodies was activated in the presence of carrageenans. No relevant structural characteristics were observed in ameliorating C5 cleavage by plasmin.
The research described here presents data on the effect of galactans of red algae, carrageenans (λ/μ/ν-, κ-, κ/β-, and ι/κ-types), and agar on complement system activation in normal human serum. The experiments were based on well surfaces coated with triggering agents for binding initiating complement components —C3 and C4. The sulfated galactans inhibited C3 binding to lipopolysaccharide with direct dependence on the sulfation degree of polysaccharides. Sulfation degree was also important in carrageenans’ capacity to reduce C4 binding to mannan. However, C4 binding to antibodies was considerably activated by carrageenans, especially with 3,6-anhydrogalactose. The gelling carrageenans were able to block antigen binding centers of total serum IgM and with more intensity than non-gelling. No structural characteristics mattered in ameliorating C5 cleavage by plasmin in extrinsic protease complement activation, but λ/μ/ν- and κ/β-carrageenans almost completely inhibited C5 cleavage. Thus, galactans participated in cell surface biology by imitating surface glycans in inhibition of C3 binding and mannose binding lectin, but as to the tthe heclassical pathway these substances stimulated complement, probably due to their structure based on carrabiose.
Collapse
Affiliation(s)
- E V Sokolova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia.
| | - A O Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - N V Sergeeva
- Medical Association of the Far East Branch of the Russian Academy of Sciences, Vladivostok, St. Kirova, 95, 690022, Russia
| | - A I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - V P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| | - L N Bogdanovich
- Medical Association of the Far East Branch of the Russian Academy of Sciences, Vladivostok, St. Kirova, 95, 690022, Russia
| | - I M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, Vladivostok, 690022, Russia
| |
Collapse
|