1
|
Zhao L, Feng L, Shan R, Huang Y, Shen L, Fan M, Wang Y. Nanoparticle-based approaches for treating restenosis after vascular injury. Front Pharmacol 2024; 15:1427651. [PMID: 39512830 PMCID: PMC11540800 DOI: 10.3389/fphar.2024.1427651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Percutaneous coronary intervention (PCI) is currently the main method for treating coronary artery stenosis, but the incidence of restenosis after PCI is relatively high. Restenosis, the narrowing of blood vessels by more than 50% of the normal diameter after PCI, severely compromises the therapeutic efficacy. Therefore, preventing postinterventional restenosis is important. Vascular restenosis is mainly associated with endothelial injury, the inflammatory response, the proliferation and migration of vascular smooth muscle cells (VSMCs), excessive deposition of extracellular matrix (ECM) and intimal hyperplasia (IH) and is usually prevented by administering antiproliferative or anti-inflammatory drugs through drug-eluting stents (DESs); however, DESs can lead to uncontrolled drug release. In addition, as extracorporeal implants, they can cause inflammation and thrombosis, resulting in suboptimal treatment. Therefore, there is an urgent need for a drug carrier with controlled drug release and high biocompatibility for in vivo drug delivery to prevent restenosis. The development of nanotechnology has enabled the preparation of nanoparticle drug carriers with low toxicity, high drug loading, high biocompatibility, precise targeting, controlled drug release and excellent intracellular delivery ability. This review summarizes the advantages of nanoparticle drug carriers for treating vascular restenosis, as well as how nanoparticles have improved targeting, slowed the release of therapeutic agents, and prolonged circulation in vivo to prevent vascular restenosis more effectively. The overall purpose of this review is to present an overview of nanoparticle therapy for vascular restenosis. We expect these findings to provide insight into nanoparticle-based therapeutic approaches for vascular restenosis.
Collapse
Affiliation(s)
- Liangfeng Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liuliu Feng
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Rong Shan
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Jirát-Ziółkowska N, Vít M, Groborz O, Kolouchová K, Červený D, Sedláček O, Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants. NANOSCALE ADVANCES 2024; 6:3041-3051. [PMID: 38868824 PMCID: PMC11166117 DOI: 10.1039/d4na00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
Collapse
Affiliation(s)
- Natalia Jirát-Ziółkowska
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
| | - Martin Vít
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
| | - Ondřej Groborz
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - David Červený
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Hlavova 8 Prague 128 00 Czech Republic
| | - Daniel Jirák
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| |
Collapse
|
3
|
Spósito L, Fonseca D, Gonçalves Carvalho S, Sábio RM, Marena GD, Bauab TM, Bagliotti Meneguin A, Parreira P, L Martins MC, Chorilli M. Engineering resveratrol-loaded chitosan nanoparticles for potential use against Helicobacter pylori infection. Eur J Pharm Biopharm 2024; 199:114280. [PMID: 38588828 DOI: 10.1016/j.ejpb.2024.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.
Collapse
Affiliation(s)
- Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil; i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Diana Fonseca
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Gabriel Davi Marena
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Paula Parreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal.
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Nayak S, Das K, Sivagnanam S, Baskar S, Stewart A, Kumar D, Maity B, Das P. Cystine-cored diphenylalanine appended peptide-based self-assembled fluorescent nanostructures direct redox-responsive drug delivery. iScience 2024; 27:109523. [PMID: 38577103 PMCID: PMC10993133 DOI: 10.1016/j.isci.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Fabrication of stimuli-responsive superstructure capable of delivering chemotherapeutics directly to the cancer cell by sparing healthy cells is crucial. Herein, we developed redox-responsive hollow spherical assemblies through self-assembly of disulfide-linked cysteine-diphenylalanine (SN). These fluorescent hollow spheres display intrinsic green fluorescence, are proteolytically stable and biocompatible, and allow for real-time monitoring of their intracellular entry. The disulfide bond facilitates selective degradation in the presence of high glutathione (GSH) concentrations, prevalent in cancer cells. We achieved efficient encapsulation (68.72%) of the anticancer drug doxorubicin (Dox) and demonstrated GSH-dependent, redox-responsive drug release within cancerous cells. SN-Dox exhibited a 20-fold lower effective concentration (2.5 μM) for compromising breast cancer cell viability compared to non-malignant cells (50 μM). The ability of SN-Dox to initiate DNA damage signaling and trigger apoptosis was comparable to that of the unencapsulated drug. Our findings highlight the potential of SN for creating site-specific drug delivery vehicles for sustained therapeutic release.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Shyamvarnan Baskar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
5
|
Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023; 199:114904. [PMID: 37263542 PMCID: PMC10526705 DOI: 10.1016/j.addr.2023.114904] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The global pharmaceutical market has recently shifted its focus from small molecule drugs to peptide, protein, and nucleic acid drugs, which now comprise a majority of the top-selling pharmaceutical products on the market. Although these biologics often offer improved drug specificity, new mechanisms of action, and/or enhanced efficacy, they also present new challenges, including an increased potential for degradation and a need for frequent administration via more invasive administration routes, which can limit patient access, patient adherence, and ultimately the clinical impact of these drugs. Controlled-release systems have the potential to mitigate these challenges by offering superior control over in vivo drug levels, localizing these drugs to tissues of interest (e.g., tumors), and reducing administration frequency. Unfortunately, adapting controlled-release devices to release biologics has proven difficult due to the poor stability of biologics. In this review, we summarize the current state of controlled-release peptides and proteins, discuss existing techniques used to stabilize these drugs through encapsulation, storage, and in vivo release, and provide perspective on the most promising opportunities for the clinical translation of controlled-release peptides and proteins.
Collapse
Affiliation(s)
- Miusi Shi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Upadhyay P, Agarwal S, Upadhyay S. Hydrophobically Modified Abelmoschus esculentus Polysaccharide Based Nanoparticles and Applications: A Review. Curr Drug Discov Technol 2022; 19:e010822207168. [PMID: 35927911 DOI: 10.2174/1570163819666220801121857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Nanomaterials are indeed a nanoscale technology that deals with the creation, evaluation, fabrication, and utilization of systems at the nanometre scale by manipulating their size and shape. We consider natural polysaccharides such as promising polysaccharides, which are biodegradable, nontoxic, abundant, and inexpensive bio-polymeric precursors for preparing the materials of choice in various industries. The aim is to review different methods to produce hydrophobically modified Abelmoschus esculentus nanoparticles and study the evaluation processes of these nanoparticles as given in the literature. It proved the benefits of derivatives of gum by introducing different chemical groups. The chemical functionalization of gum mainly includes the esterification, etherification, and crosslinking reactions of the hydroxyl groups and contains a special fibre which takes sugar levels in the blood under control, providing a sugar quantity suitable for the bowels. Okra contains mucilage that helps remove poisonous chemicals and bad cholesterol, often overloads the liver. Recovering from psychological conditions, like depression, general weakness, and joint healthiness can be done with Okra. Someone additionally applied it for pulmonary inflammation, bowel irritation, and sore throat. Purgative properties okra possesses are beneficial for bowel purification. It is used to counteract the acids. Fibre okra contains a valuable nutrient for intestinal microorganisms and ensures proper intestine functionality. It also protects the mucosa of the digestive tract by covering them with an extra layer because of its alkaline nature. Nanotechnology has emerged as a critical component of pharmaceutics, with many applications in drug carriers of interest aimed at improving drug clinical outcomes such as cancer, diabetes mellitus, wound care management, atopic dermatitis, cosmeceutical, etc. Beneficial outcomes of this review are discussed briefly.
Collapse
Affiliation(s)
- Prashant Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Shivani Agarwal
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Sukirti Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Khan KA, Zizzadoro C, Di Cerbo A, Pugliese N, Khan GM, Ghazanfar S, Almusalami EM, Muzammal M, Alsalman KJ, Farid A. Preparation and In Vitro Evaluation of Controlled-Release Matrices of Losartan Potassium Using Ethocel Grade 10 and Carbopol 934P NF as Rate-Controlling Polymers. Polymers (Basel) 2022; 14:polym14152993. [PMID: 35893957 PMCID: PMC9331966 DOI: 10.3390/polym14152993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Controlled-release formulations are essential for those drugs that require fine tuning of their activity to increase the ratio between therapeutic vs. adverse effects. Losartan potassium is among those drugs whose adverse effects may somehow impair its purported benefits. Previous investigations have been carried out to ascertain the suitability of several polymers for being associated with losartan. This study is focused on the effects of Ethocel grade 10 and Carbopol 934P NF on losartan release. Flow and physical properties were assessed according to the protocols standardized by the pharmacopeia (USP-NF 29), and the drug release in phosphate buffer (pH = 6.8) was measured for 24 h. Data evidenced good to excellent flow and physical properties according to the drug/polymer ratio and the addition of co-excipients. The release rate in 24 h was found to be 63–69% to 79–82% without or with the addition of co-excipients, respectively, following zero-order kinetics. The results also suggest a significant difference with the release profile of a traditional release losartan formulation. The results suggest the suitability of Ethocel grade 10 and Carbopol 934P NF as components of a controlled-release losartan formulation.
Collapse
Affiliation(s)
- Kamran Ahmad Khan
- Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
- Correspondence: (N.P.); (A.F.)
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Advanced Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Khaled J. Alsalman
- Pharmaceutical Care Department, Albatha General Hospital, Alodaid 36636, Saudi Arabia;
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
- Correspondence: (N.P.); (A.F.)
| |
Collapse
|
8
|
Sivagnanam S, Das K, Sivakadatcham V, Mahata T, Basak M, Pan I, Stewart A, Maity B, Das P. Generation of Self‐Assembled Structures Composed of Amphipathic, Charged Tripeptides for Intracellular Delivery of Pro‐Apoptotic Chemotherapeutics. Isr J Chem 2022. [DOI: 10.1002/ijch.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Kiran Das
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Vijay Sivakadatcham
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Tarun Mahata
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Ieshita Pan
- Department of Biotechnology Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Saveetha University Tamil Nadu 602105 India
| | - Adele Stewart
- Department of Biomedical Science Charles E. Schmidt College of Medicine Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| |
Collapse
|
9
|
Maghrabia A, Boughdady M, Meshali M. Design and Optimization of New Enteric Nanoparticles of Ceftriaxone for Oral Delivery: In vitro and in vivo Assessments. Int J Nanomedicine 2021; 16:5937-5953. [PMID: 34511899 PMCID: PMC8414076 DOI: 10.2147/ijn.s319176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Development of new strategies for oral delivery of existing antibiotics administered exclusively through intravenous route is one of the global priorities of pharmaceutical research. The encapsulation of these active pharmaceutical agents within nanosized natural products offers several traits due to their tunable surface properties. Ceftriaxone (CTX) is an injectable, third-generation cephalosporin that suffers poor oral bioavailability. METHODS In the present study, ionic gelation of two biopolymers, namely chitosan (CH) and shellac (SH), was implemented to consolidate CTX, within elegant nanoparticles (NPs) for oral administration that would increase its bioavailability and sustainability. Quality by design approach (23 full factorial design) was adopted to optimize CTX-loaded nanoparticles. The optimized formula (F2) was characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). In vitro release behavior and stability study were also evaluated. Pharmacokinetic studies of enteric-coated hard gelatin capsules (HGCs) loaded with F2-NPs were finally assessed. RESULTS The optimized spherical F2-NPs had a mean particle size of 258 nm, zeta potential of about +30.1 and appreciable drug entrapment efficiency of 83%. The in vitro drug release profile of F2-NPs in pH 7.4 experienced biphasic configuration with an initial burst release for an hour, followed by a sustained release over 15 h with Higuchi model and non-Fickian diffusion mechanism (R2=0.9852). High stability upon storage at refrigerated and room temperature for 3 months and good flow properties (θ= 32.2 and HR= 1.13) of the optimized formula were also conferred. In vivo pharmacokinetic assessment in rabbits fruitfully displayed 92% absolute bioavailability of CTX. CONCLUSION The obtained results provide evidence for the potential combination of CH and SH in NPs preparation to enhance the oral bioavailability of CTX.
Collapse
Affiliation(s)
- Amir Maghrabia
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Mariza Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mahasen Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
10
|
Archana, Tiwari A, Bajpai A. In vitro investigation of sustained release of cisplatin drug from chitosan-co-lactic acid nanoparticles. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1963281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Archana
- Research Centre, Department of Chemistry, Government V.Y.T.PG. Autonomous College, Durg, Chhattisgarh, India
| | - Alka Tiwari
- Research Centre, Department of Chemistry, Government V.Y.T.PG. Autonomous College, Durg, Chhattisgarh, India
| | - Anil Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
11
|
Oztemur J, Yalcin-Enis I. Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. J Biomed Mater Res B Appl Biomater 2021; 109:1844-1856. [PMID: 33847451 DOI: 10.1002/jbm.b.34846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023]
Abstract
Biodegradable polymers have a mean role to mimic native tissues and allow cells to penetrate, grow, and proliferate with their advanced features in tissue engineering applications. The physiological, chemical, mechanical, and biological qualities of the surfaces, which are presented from biodegradable polymers, affect the final properties of the scaffolds. In this study, it is aimed to produce fibrous webs by electrospinning method for tissue engineering applications using two different biopolymers, polylactic acid (PLA) and polycaprolactone (PCL). These polymers are used either alone or in a blended form (PLA/PCL, 1/1 wt.). Within the scope of the study, polymer concentrations (6, 8 and 10%) and solvent types (used for chloroform/ethanol/acetic acid mixture, PCL and PLA/PCL mixtures, and chloroform/acetone, PLA) vary as solution parameters. Fibrous webs are investigated in terms of morphological, chemical, and thermal characteristics. Results show continuous fibers are examined for 8 or 10% polymer concentrations with an average fiber diameter of 1.3-2.7 μm and pore area of 4-9 μm2 . No fiber formation is observed in sample groups with a polymer concentration of 6% and beaded structures are formed. Water contact angle analysis proves the hydrophobic properties of PLA and PCL, whereas Fourier-transform infrared results show there is no solution residue on the surfaces, so there is no toxic effect. Also, in differential scanning calorimetry analysis, the characteristic crystallization peaks of the polymers are recognized, and when the polymers are in a blend, it beholds that they have effects on each other's crystallization.
Collapse
Affiliation(s)
- Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Spósito L, Fortunato GC, de Camargo BAF, Ramos MADS, Souza MPCD, Meneguin AB, Bauab TM, Chorilli M. Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. J Drug Target 2021; 29:1029-1047. [PMID: 33729081 DOI: 10.1080/1061186x.2021.1904249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.
Collapse
Affiliation(s)
- Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
13
|
Lopes M, Restani R, Carvalho MP, Correia I, Aguiar-Ricardo A, Bonifácio VD. Biocompatible oligo-oxazoline crosslinkers: Towards advanced chitosans for controlled dug release. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021; 162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
The Oral route of administration forms the heartwood of the ever-growing tree of drug delivery technology. It is one of the most preferred dosage forms among patients and controlled release community. Despite the high patient compliance, the deliveries of anti-cancerous drugs, vaccines, proteins, etc. via the oral route are limited and have recorded a very low bioavailability. The oral administration must overcome the physiological barriers (low solubility, permeation and early degradation) to achieve efficient and sustained delivery. This review aims at highlighting the conventional and modern-age strategies that address some of these physiological barriers. The modern age designs include the 3D printed devices and formulations. The superiority of 3D dosage forms over conventional cargos is summarized with a focus on long-acting designs. The innovations in Pharmaceutical organizations (Lyndra, Assertio and Intec) that have taken giant steps towards commercialization of long-acting vehicles are discussed. The recent advancements made in the arena of oral peptide delivery are also highlighted. The review represents a comprehensive journey from Nano-formulations to micro-fabricated oral implants aiming at specific patient-centric designs.
Collapse
|
15
|
Fernández-Paz C, Rojas S, Salcedo-Abraira P, Simón-Yarza T, Remuñán-López C, Horcajada P. Metal-Organic Framework Microsphere Formulation for Pulmonary Administration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25676-25682. [PMID: 32364369 DOI: 10.1021/acsami.0c07356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although nanoscaled metal-organic frameworks (nanoMOFs) are promising drug carriers, their appropriate formulation remains almost unexplored and basically restricted to intravenous routes. Lungs, beneficiating from a large absorption surface and low enzymatic presence, are a very attractive target for both local and systemic delivery. However, pulmonary nanoMOF formulation is a pending and defying task. Thus, we propose a pioneer nanoMOF-based microsphere system as a potential platform for pulmonary administration. A biocompatible nanoMOF was successfully encapsulated in mannitol by a simple and continuous spray-drying technique. Upon intratracheal administration to rats, the resulting formulation, exhibiting optimal properties (i.e., homogeneity, size, density, and spray-drying process yield), was able to release the intact nanoMOF carrier uniformly along the lungs, reaching the bronchioles and alveoli.
Collapse
Affiliation(s)
- Cristina Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology. Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit, IMDEA Energy. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Teresa Simón-Yarza
- INSERM U1148. Laboratory for Vascular Translational Science, Bichat Hospital, Université de Paris. 75018 Paris, France
| | - Carmen Remuñán-López
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology. Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
16
|
Lix K, Tran MV, Massey M, Rees K, Sauvé ER, Hudson ZM, Algar WR. Dextran Functionalization of Semiconducting Polymer Dots and Conjugation with Tetrameric Antibody Complexes for Bioanalysis and Imaging. ACS APPLIED BIO MATERIALS 2019; 3:432-440. [DOI: 10.1021/acsabm.9b00899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Michael V. Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Ethan R. Sauvé
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zachary M. Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|