1
|
Schmidt L, Tüting C, Kyrilis FL, Hamdi F, Semchonok DA, Hause G, Meister A, Ihling C, Stubbs MT, Sinz A, Kastritis PL. Delineating organizational principles of the endogenous L-A virus by cryo-EM and computational analysis of native cell extracts. Commun Biol 2024; 7:557. [PMID: 38730276 PMCID: PMC11087493 DOI: 10.1038/s42003-024-06204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.
Collapse
Affiliation(s)
- Lisa Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Gerd Hause
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Christian Ihling
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale), Germany
| | - Milton T Stubbs
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
2
|
Arranz R, Chichón FJ, Cuervo A, Conesa JJ. 3D Cryo-Correlative Methods to Study Virus Structure and Dynamics Within Cells. Subcell Biochem 2024; 105:299-327. [PMID: 39738950 DOI: 10.1007/978-3-031-65187-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Understanding the dynamic processes involving virus structural components within host cells is crucial for comprehending viral infection, as viruses rely entirely on host cells for replication. Viral infection involves various intracellular stages, including cell entry, genome uncoating, replication, transcription and translation, assembly of new virus particles in a complex morphogenetic process, and the release of new virions from the host cell. These events are dynamic and scarce and can be obscured by other cellular processes, necessitating novel approaches for their in situ characterization. Among these methods, correlative microscopy integrates the labeling, localization, and functional characterization of events of interest through visible light microscopy, complemented by the structural insights provided by high-resolution imaging techniques. This correlative approach enables a comprehensive exploration of subcellular events within the cellular context, including those related to viral morphogenesis. This chapter provides an introduction to correlative three-dimensional imaging methods, specifically designed to study viral morphogenesis and other intracellular stages of the viral cycle under conditions closely resembling their native environment. The integration of whole-cell imaging and high-resolution structural biology techniques is emphasized as essential for unraveling the mechanisms by which viruses generate and disseminate their progeny.
Collapse
Affiliation(s)
- Rocío Arranz
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Mohanty P, Panda P, Acharya RK, Pande B, Bhaskar LVKS, Verma HK. Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World J Virol 2023; 12:242-255. [PMID: 38187500 PMCID: PMC10768389 DOI: 10.5501/wjv.v12.i5.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
RNA viruses continue to pose significant threats to global public health, necessitating a profound understanding of their pathogenic mechanisms and the development of effective therapeutic interventions. This manuscript provides a comprehensive overview of emerging perspectives on RNA virus-mediated infections, spanning from the intricate intricacies of viral pathogenesis to the forefront of innovative therapeutic strategies. A critical exploration of antiviral drugs sets the stage, highlighting the diverse classes of compounds that target various stages of the viral life cycle, underscoring the ongoing efforts to combat viral infections. Central to this discussion is the exploration of RNA-based therapeutics, with a spotlight on messenger RNA (mRNA)-based approaches that have revolutionized the landscape of antiviral interventions. Furthermore, the manuscript delves into the intricate world of delivery systems, exploring inno-vative technologies designed to enhance the efficiency and safety of mRNA vaccines. By analyzing the challenges and advancements in delivery mechanisms, this review offers a roadmap for future research and development in this critical area. Beyond conventional infectious diseases, the document explores the expanding applications of mRNA vaccines, including their promising roles in cancer immunotherapy and personalized medicine approaches. This manuscript serves as a valuable resource for researchers, clinicians, and policymakers alike, offering a nuanced perspective on RNA virus pathogenesis and the cutting-edge therapeutic interventions. By synthesizing the latest advancements and challenges, this review contributes significantly to the ongoing discourse in the field, driving the development of novel strategies to combat RNA virus-mediated infections effectively.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Poojarani Panda
- Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, chhattisgarh, India
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| |
Collapse
|
4
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
6
|
Corbet GA, Burke JM, Parker R. ADAR1 limits stress granule formation through both translation-dependent and translation-independent mechanisms. J Cell Sci 2021; 134:272063. [PMID: 34397095 DOI: 10.1242/jcs.258783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic assemblies of RNA and protein that form when translation is repressed during the integrated stress response. SGs assemble from the combination of RNA-RNA, RNA-protein and protein-protein interactions between messenger ribonucleoprotein complexes (mRNPs). The protein adenosine deaminase acting on RNA 1 (ADAR1, also known as ADAR) recognizes and modifies double-stranded RNAs (dsRNAs) within cells to prevent an aberrant innate immune response. ADAR1 localizes to SGs, and since RNA-RNA interactions contribute to SG assembly and dsRNA induces SGs, we examined how ADAR1 affects SG formation. First, we demonstrate that ADAR1 depletion triggers SGs by allowing endogenous dsRNA to activate the integrated stress response through activation of PKR (also known as EIF2AK2) and translation repression. However, we also show that ADAR1 limits SG formation independently of translation inhibition. ADAR1 repression of SGs is independent of deaminase activity but is dependent on dsRNA-binding activity, suggesting a model where ADAR1 binding limits RNA-RNA and/or RNA-protein interactions necessary for recruitment to SGs. Given that ADAR1 expression is induced during viral infection, these findings have implications for the role of ADAR1 in the antiviral response. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Giulia A Corbet
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - James M Burke
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
7
|
Abstract
The function of the mammalian orthoreovirus (reovirus) σNS nonstructural protein is enigmatic. σNS is an RNA-binding protein that forms oligomers and enhances the stability of bound RNAs, but the mechanisms by which it contributes to reovirus replication are unknown. To determine the function of σNS-RNA binding in reovirus replication, we engineered σNS mutants deficient in RNA-binding capacity. We found that alanine substitutions of positively charged residues in a predicted RNA-binding domain decrease RNA-dependent oligomerization. To define steps in reovirus replication facilitated by the RNA-binding property of σNS, we established a complementation system in which wild-type or mutant forms of σNS could be tested for the capacity to overcome inhibition of σNS expression. Mutations in σNS that disrupt RNA binding also diminish viral replication and σNS distribution to viral factories. Moreover, viral mRNAs only incorporate into viral factories or factory-like structures (formed following expression of nonstructural protein μNS) when σNS is present and capable of binding RNA. Collectively, these findings indicate that σNS requires positively charged residues in a putative RNA-binding domain to recruit viral mRNAs to sites of viral replication and establish a function for σNS in reovirus replication.
Collapse
|