1
|
Mudhoo A, Pittman CU. Prevention is better than a cure: A 'zero residual nanoadsorbent toxicity' downstream from its effluent exit point. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174479. [PMID: 38969112 DOI: 10.1016/j.scitotenv.2024.174479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Here, we offer thoughts concerning a 'zero residual nanoadsorbent toxicity' environmental policy which we strongly advocate. Our discussions in support of this policy are based on the adage 'Prevention is better than cure'. Besides emphasizing the need for strict regulations (regional and international), research and development avenues are highlighted for the technology that can achieve 'zero tolerance' for residual nanoadsorbent levels escaping and building up in receiving ecosystems. We do not oppose nanoadsorbents. On the contrary, their water and wastewater purification potentials are well recognized. However, they should not be permitted to translocate downstream from the exit point of a final effluent.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Marzeddu S, Décima MA, Camilli L, Bracciale MP, Genova V, Paglia L, Marra F, Damizia M, Stoller M, Chiavola A, Boni MR. Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207162. [PMID: 36295233 PMCID: PMC9607634 DOI: 10.3390/ma15207162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.
Collapse
Affiliation(s)
- Simone Marzeddu
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: ; Tel.: +39-06-44585514
| | - María Alejandra Décima
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Luca Camilli
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Paola Bracciale
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Virgilio Genova
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Laura Paglia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Francesco Marra
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Martina Damizia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Marco Stoller
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Agostina Chiavola
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
3
|
Narayanan M, Ma Y. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Front Microbiol 2022; 13:929730. [PMID: 35756072 PMCID: PMC9218714 DOI: 10.3389/fmicb.2022.929730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
A number of anthropogenic and weathering activities accumulate heavy metals in soils, causing adverse effects on soil characteristics, microbial activity (diversity), agricultural practices, and underground aquifers. Controlling soil heavy metal pollution is difficult due to its persistence in soils, resulting in the deposition and transmission into the food web via agricultural food products, ultimately affecting human health. This review critically explores the potential for remediation of metal-contaminated soils using a biochar-based responsible approach. Plant-based biochar is an auspicious bio-based residue substance that can be used for metal-polluted soil remediation and soil improvement as a sustainable approach. Plants with rapid growth and increased biomass can meet the requirements for phytoremediation in large quantities. Recent research indicates significant progress in understanding the mechanisms of metal accumulation and contaminant movement in plants used for phytoremediation of metal-contaminated soil. Excessive contamination reduces plant biomass and growth, which has substantial hyperaccumulating possibilities and is detrimental to the phytoremediation process. Biochar derived from various plant sources can promote the growth and phytoremediation competence of native or wild plants grown in metal-polluted soil. Carbon-enriched biochar encourages native microbial growth by neutralizing pH and providing nutritional support. Thus, this review critically discusses the influence of plant and agricultural waste-based biochar on plant phytoremediation potential in metal-contaminated soils.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Keshavarz MH, Shirazi Z, Barghahi A, Mousaviazar A, Zali A. A novel model for prediction of stability constants of the thiosemicarbazone ligands with different types of toxic heavy metal ions using structural parameters and multivariate linear regression method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37084-37095. [PMID: 35031996 DOI: 10.1007/s11356-021-17714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
A novel model is presented for reliable estimation of the stability constants of the thiosemicarbazone ligands with different types of toxic heavy metal ions (log β11) in an aqueous solution, which has wide usage in environmental safety and ecotoxicology applications. The biggest reported data of log β11 for 120 metalthiosemicarbazone complexes are used for deriving and testing the novel model. In contrast to available methods where they need the two-dimensional (2D) and three-dimensional (3D) complex molecular descriptors as well as expert users and computer codes, the novel correlation uses four additive and two non-additive structural parameters of thiosemicarbazone ligands. The calculated results of the novel correlation are compared with the outputs of the genetic algorithm with multivariate linear regression method (GA-MLR) as one of the best existing methods, which requires seven complex descriptors. The estimated results for 78 of training as well as 42 of two different test sets were established by external and internal validations. The values of statistical parameters comprising average deviation, average absolute deviation, average absolute relative deviation, absolute maximum deviation, and the coefficient of determination for 73 data of training set of New model/GA-MLR are 0.04/ - 0.25, 1.06/1.31, 14.4/18.7, 3.18/7.92, and 0.830/0.652, respectively. Thus, the predicted results of the new model are worthy as compared to the complex GA-MLR model. Moreover, assessments of various statistical parameters confirm that the new model provides great reliability, goodness-of-fit, accuracy, and precision.
Collapse
Affiliation(s)
| | - Zeinab Shirazi
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Asileh Barghahi
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Ali Mousaviazar
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| | - Abbas Zali
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Iran
| |
Collapse
|
5
|
Castro-Riquelme CL, Ochoa-Terán A, Roldán-Villegas IY, Trujillo-Navarrete B, Miranda-Soto V, Pérez-Sicairos S, Pina-Luis G, Reynoso-Soto EA, Labastida-Galván V, Ordoñez M. Versatile optical response of pyridylalkyl naphthalenediimides in the interaction with metal ions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Geraldo B, de Araujo LG, Vicente R, Taddei MHT, Cheberle SM, Marumo JT. Radioanalytical methods for sequential analysis of actinide isotopes in activated carbon filter-bed waste. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|