1
|
Abd-Elkareem M, Alnasser SM, Meshal A, Kotob MH, Amer AS, Abdullah RI, Ali AU. The effect of norethisterone acetate on the uterine telocytes, immune cells and progesterone receptors in albino rats. Sci Rep 2025; 15:8997. [PMID: 40089502 PMCID: PMC11910565 DOI: 10.1038/s41598-025-92354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
This study is the first attempt to examine the effects of NETA on immune cells and telocytes. The results of this study form an important knowledge base for the development of new information on the mechanism of contraceptive action of NETA in the uterus. Norethisterone acetate (NETA) is a synthetic progestogen medication commonly utilized in birth control pills, menopausal hormone therapy, and for curing abnormal uterine bleeding and endometriosis. Furthermore NETA has many beneficial uses in veterinary medicine as control and synchronization of estrous cycle. The impact of NETA on the endometrial stromal cells (ESCs), telocytes, and uterine immune cells is not well understood. Therefore, this study focuses on assessing changes in uterine immune cells, ESCs, and telocytes following exposure to NETA in albino rats. To achieve this objective, fourteen adult female albino rats were randomly divided into two groups: a control group and an NETA-treated group. Rats in the control group received daily pelleted food, water, and were oral administered of 2 ml distilled water. In contrast, rats in the NETA-treated group received daily pelleted food, water, and were orally administered 20 µg of NETA dissolved in 2 ml distilled water. The experiment spanned three weeks. The findings of this study revealed that NETA usage increases the infiltration and activity of immune cells (eosinophils, neutrophils, macrophages, lymphocytes, and mast cells). Furthermore, it enhances the vesicular activity of uterine telocytes and their communication with various immune cells. NETA also influences decidualization and the immunoexpression of progesterone receptors in uterine epithelial and immune cells. This study concludes that the primary mechanism by which NETA controls pregnancy is through decidual (pregnancy-like) effects or improper decidualization, which inhibits fertilization and implantation respectively. Our research provides evidence of the contraceptive mechanism of NETA from an immunological perspective in an animal model.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Alotaibi Meshal
- Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin,, Saudi Arabia
| | - Mohamed H Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ayman S Amer
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Raghda Ismail Abdullah
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Ahmed U Ali
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Abdel Hafez SMN, Saber EA, Aziz NM, Aleem MMAE, Mohamed MS, Abdelhafez EMN, Ibrahim RA. Possible protective effects of vanillin against stress-induced seminiferous tubule injury via modulation of Nrf2 and ZO1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1853-1870. [PMID: 39186188 PMCID: PMC11825570 DOI: 10.1007/s00210-024-03355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Around 20% of the human population is distressed. Previous studies have looked into the relationship between restraint immobilization stress (IS) and sexual behavior in male rats. The current study aimed to provide a brief explanation of the mechanisms that generated testicular injury with chronic IS and an attempt to evaluate the mechanisms and effects of vanillin as a novel protective agent. Forty-eight adult male albino rats were divided into six groups: control, vanillin-treated, chronic 2-h IS, 2-h stressed-vanillin-treated, chronic 6-h IS, and 6-h stressed-vanillin treated. The rats were sacrificed, and blood samples were collected for biochemical study. The testes were processed for biochemical and histological study, as well as histological Johnsen score. The results showed that prolonged IS increased both corticosterone and TNF-α levels as well as decreased testosterone, luteinizing hormone, catalase, and Nrf2 levels. This effect was more pronounced after 6 h of IS compared to 2 h. It also induced various testicular injuries with weak ZO-1 and CD34 immunoreactions. On the contrary, vanillin improved all mentioned biochemical and histological alternations induced by stress. Additionally, computational molecular docking analyses were conducted on the compound vanillin within the active site of Zona Occludens-1 (PDB ID: 2JWE). The results demonstrated remarkable docking scores and binding affinity, corroborating its potential protective efficacy. It could be concluded that vanillin is a promising treatment alternative for protecting testicular tissue from the harmful effects of IS via its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Medical Sciences (Histology and Cell Biology), Deraya University, New Minia City, Egypt
| | - Neven Makram Aziz
- Department of Medical Sciences (Physiology), Deraya University, New Minia City, Egypt
| | | | | | | | - Randa Ahmed Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Purelku M, Sahin H, Erkanli Senturk G, Tanriverdi G. Distribution and morphologic characterization of telocytes in rat ovary and uterus: insights from ultrastructural and immunohistochemical analysis. Histochem Cell Biol 2024; 162:373-384. [PMID: 39078438 PMCID: PMC11393091 DOI: 10.1007/s00418-024-02313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Telocytes (TCs) are characterized by a small oval-shaped cell body with long prolongations that are called telopods (Tps). PDGFR-β and c-kit markers may assist for the immunohistochemical identification of TCs; however, by these means they cannot be identified with absolute specificity. Transmission electron microscopy (TEM) is considered as a gold standard method for TCs observation. Studies on TCs in the female reproductive system are limited, and there is a lack of awareness regarding TCs in rat ovaries. We aimed to demonstrate the existence and morphology of TCs in rat ovaries, alongside previously studied TCs in rat uteri. Thus, ovaries and uteri from young adult Sprague-Dawley female rats (n = 8) with regular estrous cycles were collected. Then, left ovaries and uteri were proccessed for TEM analysis, while the right ones were used for immunohistochemistry. As a result, TCs were seen throughout the rat's ovarian stroma with their characteristic cell bodies, Tps, podomes (Pds) and podomers (Pdms). Tps were situated within the thecal layer of the follicles, surrounding the corpus luteum and blood vessels. Ovarian TCs were recognized to have relationship with other TCs/stromal cells. Subsequently, TCs were seen in stroma of endometrium with surrounding blood vessels and uterine glands, myometrium and perimetrium in rat uteri. There was also no statistical significance between the number of c-kit+ and PDGFR-β+ telocyte-like cells in both rat ovarian (p = 0.137) and endometrial stroma (p = 0.450). Further investigation of the roles and functions of TCs in the female reproductive system is needed.
Collapse
Affiliation(s)
- Merjem Purelku
- Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
4
|
Sanches BDA, Rocha LC, Neto JP, Beguelini MR, Ciena AP, Carvalho HF. Telocytes of the male reproductive system: dynamic tissue organizers. Front Cell Dev Biol 2024; 12:1444156. [PMID: 39469114 PMCID: PMC11513265 DOI: 10.3389/fcell.2024.1444156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Telocytes are CD34+ interstitial cells that have long cytoplasmic projections (called telopodes), and have been detected in several organs, including those of the male reproductive system. In this brief review we evaluate the role of telocytes in tissue organization of the different organs of the male reproductive system in which these cells were studied. In general terms, telocytes act in the tissue organization through networks of telopodes that separate the epithelia from the stroma, as well as dividing the stroma into different compartments. In addition to this contribution to the structural integrity, there is direct and indirect evidence that such "walls" formed by telocytes also compartmentalize paracrine factors that they or other cells produce, which have a direct impact on morphogenesis and the maintenance of organ cell differentiation, as well as on their normal physiology. Moreover, alterations in telocytes and telopode networks are correlated with pathological conditions in the male reproductive system, in response to profound changes in structural organization of the organs, in inflammation, hyperplasia and cancer. Further studies are necessary to evaluate the molecular pathways telocytes employ in different contexts of physiology and disease.
Collapse
Affiliation(s)
- Bruno D. A. Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lara C. Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - J. Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Adriano P. Ciena
- Center of Biological and Health Science, Federal University of Western Bahia (UFOB), Barreiras, Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
5
|
Telocytes’ Role in Modulating Gut Motility Function and Development: Medical Hypotheses and Literature Review. Int J Mol Sci 2022; 23:ijms23137017. [PMID: 35806023 PMCID: PMC9267102 DOI: 10.3390/ijms23137017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
This review article explores the telocytes’ roles in inflammatory bowel diseases (IBD), presenting the mechanisms and hypotheses related to epithelial regeneration, progressive fibrosis, and dysmotility as a consequence of TCs’ reduced or absent number. Based on the presented mechanisms and hypotheses, we aim to provide a functional model to illustrate TCs’ possible roles in the normal and pathological functioning of the digestive tract. TCs are influenced by the compression of nearby blood vessels and the degree of fibrosis of the surrounding tissues and mediate these processes in response. The changes in intestinal tube vascularization induced by the movement of the food bowl, and the consequent pH changes that show an anisotropy in the thickness of the intestinal tube wall, have led to the identification of a pattern of intestinal tube development based on telocytes’ ability to communicate and modulate surrounding cell functions. In the construction of the theoretical model, given the predictable occurrence of colic in the infant, the two-layer arrangement of the nerve plexuses associated with the intestinal tube was considered to be incompletely adapted to the motility required with a diversified diet. There is resulting evidence of possible therapeutic targets for diseases associated with changes in local nerve tissue development.
Collapse
|
6
|
Telocytes: Active Players in the Rainbow Trout ( Oncorhynchus mykiss) Intestinal Stem-Cell Niche. Animals (Basel) 2021; 12:ani12010074. [PMID: 35011180 PMCID: PMC8744786 DOI: 10.3390/ani12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
In order to improve the sustainability of trout farming, it is essential to develop alternatives to fish-based meals that prevent intestinal disorders and support growth performances. Therefore, an accurate knowledge of intestinal morphology and physiology is desirable. We previously described the epithelial component of the intestinal stem-cell (ISC) niche in rainbow trout (Oncorhynchus mykiss), which is one of the most successfully farmed species and a representative model of the salmonids family. This work aims to expand that knowledge by investigating the niche stromal components that contribute to intestinal homeostasis. We analyzed samples belonging to five individuals collected from a local commercial farm. Histological and ultrastructural studies revealed peculiar mesenchymal cells adjacent to the epithelium that generated an intricate mesh spanning from the folds' base to their apex. Their voluminous nuclei, limited cytoplasm and long cytoplasmic projections characterized them as telocytes (TCs). TEM analysis showed the secretion of extracellular vesicles, suggesting their functional implication in cell-to-cell communication. Furthermore, we evaluated the localization of well-defined mouse TC markers (pdgfrα and foxl1) and their relationship with the epithelial component of the niche. TCs establish a direct connection with ISCs and provide short-range signaling, which also indicates their key role as the mesenchymal component of the stem-cell niche in this species. Interestingly, the TC distribution and gene-expression pattern in rainbow trout closely overlapped with those observed in mice, indicating that they have the same functions in both species. These results substantially improve our understanding of the mechanisms regulating intestinal homeostasis and will enable a more detailed evaluation of innovative feed effects.
Collapse
|