1
|
David R, Scala MR, Ellenbogen J. Review of the targeting accuracy of frameless and frame-based robot-assisted deep brain stimulation electrode implantation in pediatric patients using the Neurolocate module. J Neurosurg Pediatr 2024; 33:207-213. [PMID: 38134418 DOI: 10.3171/2023.10.peds23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/26/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The Neurolocate module is a 3D frameless patient registration module that is designed for use with the Neuromate stereotactic robot. Long-term electrical stimulation of the globus pallidus internus (GPi) and subthalamic nucleus (STN) via deep brain electrode implantation is particularly successful in a select group of movement disorders in pediatric patients. This study aimed to review the targeting accuracy of deep brain stimulation (DBS) electrode implantation in a single center, comparing standard frame-based techniques to the frameless Neurolocate module. METHODS Twenty-four pediatric patients underwent implantation of bilateral DBS electrodes under general anesthesia during the period of August 2018-August 2022. All patients underwent robot-assisted stereotactic implantation of DBS electrodes using an intraoperative O-arm 3D scanner to confirm the final electrode position. These coordinates were compared with the planned entry and target, with attention to depth, radial, directional, and absolute errors, in addition to Euclidean distance (ED). The primary outcome evaluated the accuracy and safety of the Neurolocate frameless technology compared with standard frame-based techniques. RESULTS Of the 24 bilateral DBS electrode implantations performed, 62.5% used Neurolocate technology: 87.5% were delivered to the GPi and the remaining 12.5% to the STN. The mean patient age was 11.0 (range 4-18) years and 70.8% were male. The median absolute errors in x-, y-, and z-axes were 0.35, 0.75, and 0.9 mm, respectively, using the Neurolocate module compared with 0.30, 0.95, and 1.1 mm using the standard frame-based technique. The median ED from the planned target to the actual electrode position with the Neurolocate module was 1.28 mm versus 1.69 mm using standard frame-based techniques. No major perioperative complications occurred. CONCLUSIONS Stereotactic robot-assisted DBS implantation with the frameless Neurolocate module is safe for use in the pediatric population, showing good surgical accuracy and no inferiority to standard frame-based techniques. The Neurolocate module for robotic DBS surgery has the potential to improve surgical targeting accuracy, surgical time, patient comfort, and safety.
Collapse
|
2
|
Franz D, Richter A, Köhling R. Electrophysiological insights into deep brain stimulation of the network disorder dystonia. Pflugers Arch 2023; 475:1133-1147. [PMID: 37530804 PMCID: PMC10499667 DOI: 10.1007/s00424-023-02845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.
Collapse
Affiliation(s)
- Denise Franz
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Haslacher D, Narang A, Sokoliuk R, Cavallo A, Reber P, Nasr K, Santarnecchi E, Soekadar SR. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). Neuroimage 2023:120187. [PMID: 37230205 DOI: 10.1016/j.neuroimage.2023.120187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95 %, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15 %. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Asmita Narang
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany..
| |
Collapse
|
4
|
Marie V. What have we learned about the biology of dystonia from deep brain stimulation? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:481-491. [PMID: 37482401 DOI: 10.1016/bs.irn.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Deep brain stimulation has dramatically changed the management of patients with dystonia, therapeutic approach of dystonia with marked improvement of dystonia and functional disability. However, despite decades of experience and identification of good prognosis factors, prediction of beneficial effect at the individual level is still a challenge. There is inter-individual variability in therapeutic outcome. Genetic factors are identified but subgroups of patients still have relapse or worsening of dystonia in short or long term. Possible "biological factors" underlying such a difference among patients are discussed, including structural or functional differences including altered plasticity.
Collapse
Affiliation(s)
- Vidailhet Marie
- Sorbonne Université, Paris Brain Institute - ICM, Inserm CNRS, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France.
| |
Collapse
|
5
|
Bologna M, Valls-Solè J, Kamble N, Pal PK, Conte A, Guerra A, Belvisi D, Berardelli A. Dystonia, chorea, hemiballismus and other dyskinesias. Clin Neurophysiol 2022; 140:110-125. [PMID: 35785630 DOI: 10.1016/j.clinph.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Hyperkinesias are heterogeneous involuntary movements that significantly differ in terms of clinical and semeiological manifestations, including rhythm, regularity, speed, duration, and other factors that determine their appearance or suppression. Hyperkinesias are due to complex, variable, and largely undefined pathophysiological mechanisms that may involve different brain areas. In this chapter, we specifically focus on dystonia, chorea and hemiballismus, and other dyskinesias, specifically, levodopa-induced, tardive, and cranial dyskinesia. We address the role of neurophysiological studies aimed at explaining the pathophysiology of these conditions. We mainly refer to human studies using surface and invasive in-depth recordings, as well as spinal, brainstem, and transcortical reflexology and non-invasive brain stimulation techniques. We discuss the extent to which the neurophysiological abnormalities observed in hyperkinesias may be explained by pathophysiological models. We highlight the most relevant issues that deserve future research efforts. The potential role of neurophysiological assessment in the clinical context of hyperkinesia is also discussed.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Josep Valls-Solè
- Institut d'Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
6
|
Neumann WJ, Köhler RM, Kühn AA. A practical guide to invasive neurophysiology in patients with deep brain stimulation. Clin Neurophysiol 2022; 140:171-180. [PMID: 35659821 DOI: 10.1016/j.clinph.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) offers the unique opportunity to record human neural population activity as multiunit activity and local field potentials (LFP) directly from the target area in the depth of the brain. This has led to important discoveries through characterization of pathological activity patterns and identification of motor and cognitive correlates of basal ganglia function in patients with movement disorders. These findings have been covered extensively in a large body of literature, but the technical aspects of microelectrode and LFP recordings in DBS patients are rarely reported. This review summarizes the experience from invasive neurophysiology experiments in over 500 DBS cases in the last 20 years in a single centre. It introduces the basics of intraoperative microelectrode recordings, discusses the neurophysiological and technical aspects of LFP signals and gives and outlook on current and next-generation developments - from sensing enabled implantable devices to combined electrocorticography and LFP recordings during adaptive DBS.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Richard M Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|