1
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024; 39:2155-2172. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.541324. [PMID: 37292595 PMCID: PMC10245994 DOI: 10.1101/2023.05.26.541324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cholinergic innervation of the cortex originates almost entirely from populations of neurons in the basal forebrain (BF). Structurally, the ascending BF cholinergic projections are highly branched, with individual cells targeting multiple different cortical regions. However, it is not known whether the structural organization of basal forebrain projections reflects their functional integration with the cortex. We therefore used high-resolution 7T diffusion and resting state functional MRI in humans to examine multimodal gradients of BF cholinergic connectivity with the cortex. Moving from anteromedial to posterolateral BF, we observed reduced tethering between structural and functional connectivity gradients, with the most pronounced dissimilarity localized in the nucleus basalis of Meynert (NbM). The cortical expression of this structure-function gradient revealed progressively weaker tethering moving from unimodal to transmodal cortex, with the lowest tethering in midcingulo-insular cortex. We used human [ 18 F] fluoroethoxy-benzovesamicol (FEOBV) PET to demonstrate that cortical areas with higher concentrations of cholinergic innervation tend to exhibit lower tethering between BF structural and functional connectivity, suggesting a pattern of increasingly diffuse axonal arborization. Anterograde viral tracing of cholinergic projections and [ 18 F] FEOBV PET in mice confirmed a gradient of axonal arborization across individual BF cholinergic neurons. Like humans, cholinergic neurons with the highest arborization project to cingulo-insular areas of the mouse isocortex. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration of their cortical targets.
Collapse
|
3
|
Shi Y, Cui D, Sun F, OuYang Z, Dou R, Jiao Q, Cao W, Yu G. Exploring sexual dimorphism in basal forebrain volume changes during aging and neurodegenerative diseases. iScience 2024; 27:109041. [PMID: 38361626 PMCID: PMC10867643 DOI: 10.1016/j.isci.2024.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to healthy individuals. However, it's uncertain whether this difference is consistent between sexes. It has been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume changes during the normal aging process remains unclear. In the cross-sectional study, we observed a significant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to Healthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences in BF volume between MCI and HCs were observed solely in the female group. Additionally, we identified asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study highlights the importance of considering sex as a research variable in brain science.
Collapse
Affiliation(s)
- Yajun Shi
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Dong Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Fengzhu Sun
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Zhen OuYang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
- Department of Radiology, Taian Municipal Hospital, Tai’ an, Shandong 271000, China
| | - Ruhai Dou
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Guanghui Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| |
Collapse
|
4
|
Xia Y, Maruff P, Doré V, Bourgeat P, Laws SM, Fowler C, Rainey-Smith SR, Martins RN, Villemagne VL, Rowe CC, Masters CL, Coulson EJ, Fripp J. Longitudinal trajectories of basal forebrain volume in normal aging and Alzheimer's disease. Neurobiol Aging 2023; 132:120-130. [PMID: 37801885 DOI: 10.1016/j.neurobiolaging.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
Dysfunction of the cholinergic basal forebrain (BF) system and amyloid-β (Aβ) deposition are early pathological features in Alzheimer's disease (AD). However, their association in early AD is not well-established. This study investigated the nature and magnitude of volume loss in the BF, over an extended period, in 516 older adults who completed Aβ-PET and serial magnetic resonance imaging scans. Individuals were grouped at baseline according to the presence of cognitive impairment (CU, CI) and Aβ status (Aβ-, Aβ+). Longitudinal volumetric changes in the BF and hippocampus were assessed across groups. The results indicated that high Aβ levels correlated with faster volume loss in the BF and hippocampus, and the effect of Aβ varied within BF subregions. Compared to CU Aβ+ individuals, Aβ-related loss among CI Aβ+ adults was much greater in the predominantly cholinergic subregion of Ch4p, whereas no difference was observed for the Ch1/Ch2 region. The findings support early and substantial vulnerability of the BF and further reveal distinctive degeneration of BF subregions during early AD.
Collapse
Affiliation(s)
- Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia.
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Vincent Doré
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Melbourne, Victoria, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Simon M Laws
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Ralph N Martins
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Bohnen NI, van der Zee S, Albin R. Cholinergic centro-cingulate network in Parkinson disease and normal aging. Aging (Albany NY) 2023; 15:10817-10820. [PMID: 37899134 PMCID: PMC10637805 DOI: 10.18632/aging.205209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Decreased cholinergic binding within the recently identified centro-cingulate brain network robustly has been shown to robustly correlate with the severity of cognitive impairment in Parkinson disease (PD). This network with key hubs within the cingulum, operculum and peri-central cortical regions also correlates with elements of parkinsonian motor impairments, including postural instability and gait difficulties, such as falls or freezing. MRI neuroimaging studies have shown that the anterior midcingulate cortex is a key node for cognitive aspects of movement generation, i.e., intentional motor control. Recent evidence also suggests a novel aspect of organization of primary motor cortex, describing "effector" regions for fine movement control intercalated with interlinked "inter-effector" regions devoted to whole-body control. A distinguishing feature of inter-effector regions is tight linkage to the cingular and opercular regions. Such inter-effector regions have been proposed to be part of a greater somato-cognitive action network necessary for integration of goals and movement. Recent evidence also points to vulnerabilities of cholinergic nerve terminals in the centro-cingulate network in older non-PD adults. These features of normal aging underscore that cortical cholinergic terminal losses in age-associated neurodegenerative disorders are likely not exclusively the result of disease-specific etiologies but also related to otherwise normal aging. Practical implications of this overlap are that addressing disease-specific and general aging etiologies involved in neurodegeneration, may be of benefit in age-associated neurodegenerative disorders where significant cholinergic systems degeneration is present.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roger Albin
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Ji YW, Shen ZL, Zhang X, Zhang K, Jia T, Xu X, Geng H, Han Y, Yin C, Yang JJ, Cao JL, Zhou C, Xiao C. Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice. Nat Commun 2023; 14:2182. [PMID: 37069246 PMCID: PMC10110548 DOI: 10.1038/s41467-023-37968-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.
Collapse
Affiliation(s)
- Ya-Wei Ji
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zi-Lin Shen
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Kairan Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Tao Jia
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiangying Xu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Huizhen Geng
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Yu Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Cui Yin
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Li Cao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Chunyi Zhou
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Cheng Xiao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
9
|
Bohnen NI, Roytman S, Kanel P, Müller MLTM, Scott PJH, Frey KA, Albin RL, Koeppe RA. Progression of regional cortical cholinergic denervation in Parkinson's disease. Brain Commun 2022; 4:fcac320. [PMID: 36569603 PMCID: PMC9772878 DOI: 10.1093/braincomms/fcac320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson Consortium, Critical Path Institute, Tucson, AZ 85718, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
11
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
12
|
Kanel P, van der Zee S, Sanchez-Catasus CA, Koeppe RA, Scott PJ, van Laar T, Albin RL, Bohnen NI. Cerebral topography of vesicular cholinergic transporter changes in neurologically intact adults: A [18F]FEOBV PET study. AGING BRAIN 2022; 2. [PMID: 35465252 PMCID: PMC9028526 DOI: 10.1016/j.nbas.2022.100039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetylcholine plays a major role in brain cognitive and motor functions with regional cholinergic terminal loss common in several neurodegenerative disorders. We describe age-related declines of regional cholinergic neuron terminal density in vivo using the positron emission tomography (PET) ligand [18F](–)5-Fluoroethoxybenzovesamicol ([18F] FEOBV), a vesamicol analogue selectively binding to the vesicular acetylcholine transporter (VAChT). A total of 42 subjects without clinical evidence of neurologic disease (mean 50.55 [range 20–80] years, 24 Male/18 Female) underwent [18F]FEOBV brain PET imaging. We used SPM based voxel-wise statistical analysis to perform whole brain voxel-based parametric analysis (family-wise error corrected, FWE) and to also extract the most significant clusters of regions correlating with aging with gender as nuisance variable. Age-related VAChT binding reductions were found in primary sensorimotor cortex, visual cortex, caudate nucleus, anterior to mid-cingulum, bilateral insula, para-hippocampus, hippocampus, anterior temporal lobes/amygdala, dorsomedial thalamus, metathalamus, and cerebellum (gender and FWE-corrected, P < 0.05). These findings show a specific topographic pattern of regional vulnerability of cholinergic nerve terminals across multiple cholinergic systems accompanying aging.
Collapse
Affiliation(s)
- Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Corresponding author at: Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105-9755, USA.
| | - Sygrid van der Zee
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlos A. Sanchez-Catasus
- Department of Neurology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, the Netherlands
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Roger L. Albin
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA
| |
Collapse
|