1
|
Romanova IV, Mikhailova EV, Mikhrina AL, Shpakov AO. Type 1 melanocortin receptors in pro-opiomelanocortin-, vasopressin-, and oxytocin-immunopositive neurons in different areas of mouse brain. Anat Rec (Hoboken) 2023; 306:2388-2399. [PMID: 35475324 DOI: 10.1002/ar.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.
Collapse
Affiliation(s)
- Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya L Mikhrina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Meth EMS, Brandão LEM, van Egmond LT, Xue P, Grip A, Wu J, Adan A, Andersson F, Pacheco AP, Uvnäs-Moberg K, Cedernaes J, Benedict C. A weighted blanket increases pre-sleep salivary concentrations of melatonin in young, healthy adults. J Sleep Res 2023; 32:e13743. [PMID: 36184925 DOI: 10.1111/jsr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Weighted blankets have emerged as a potential non-pharmacological intervention to ease conditions such as insomnia and anxiety. Despite a lack of experimental evidence, these alleged effects are frequently attributed to a reduced activity of the endogenous stress systems and an increased release of hormones such as oxytocin and melatonin. Thus, the aim of the present in-laboratory crossover study (26 young and healthy participants, including 15 men and 11 women) was to investigate if using a weighted blanket (~12% of body weight) at bedtime resulted in higher salivary concentrations of melatonin and oxytocin compared with a light blanket (~2.4% of body weight). We also examined possible differences in salivary concentrations of the stress hormone cortisol, salivary alpha-amylase activity (as an indicative metric of sympathetic nervous system activity), subjective sleepiness, and sleep duration. When using a weighted blanket, the 1 hour increase of salivary melatonin from baseline (i.e., 22:00) to lights off (i.e., 23:00) was about 32% higher (p = 0.011). No other significant differences were found between the blanket conditions, including subjective sleepiness and total sleep duration. Our study is the first to suggest that using a weighted blanket may result in a more significant release of melatonin at bedtime. Future studies should investigate whether the stimulatory effect on melatonin secretion is observed on a nightly basis when frequently using a weighted blanket over weeks to months. It remains to be determined whether the observed increase in melatonin may be therapeutically relevant for the previously described effects of the weighted blanket on insomnia and anxiety.
Collapse
Affiliation(s)
- Elisa M S Meth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Lieve T van Egmond
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anastasia Grip
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jiafei Wu
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ayaat Adan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - André P Pacheco
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Fukui H, Toyoshima K. Testosterone, oxytocin and co-operation: A hypothesis for the origin and function of music. Front Psychol 2023; 14:1055827. [PMID: 36860786 PMCID: PMC9968751 DOI: 10.3389/fpsyg.2023.1055827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Since the time of Darwin, theories have been proposed on the origin and functions of music; however, the subject remains enigmatic. The literature shows that music is closely related to important human behaviours and abilities, namely, cognition, emotion, reward and sociality (co-operation, entrainment, empathy and altruism). Notably, studies have deduced that these behaviours are closely related to testosterone (T) and oxytocin (OXT). The association of music with important human behaviours and neurochemicals is closely related to the understanding of reproductive and social behaviours being unclear. In this paper, we describe the endocrinological functions of human social and musical behaviour and demonstrate its relationship to T and OXT. We then hypothesised that the emergence of music is associated with behavioural adaptations and emerged as humans socialised to ensure survival. Moreover, the proximal factor in the emergence of music is behavioural control (social tolerance) through the regulation of T and OXT, and the ultimate factor is group survival through co-operation. The "survival value" of music has rarely been approached from the perspective of musical behavioural endocrinology. This paper provides a new perspective on the origin and functions of music.
Collapse
Affiliation(s)
- Hajime Fukui
- Nara University of Education, Nara, Japan,*Correspondence: Hajime Fukui, ✉
| | | |
Collapse
|
4
|
Bazhanova ED. Desynchronosis: Types, Main Mechanisms, Role in the Pathogenesis of Epilepsy and Other Diseases: A Literature Review. Life (Basel) 2022; 12:1218. [PMID: 36013397 PMCID: PMC9410012 DOI: 10.3390/life12081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian information is stored in mammalian tissues by an autonomous network of transcriptional feedback loops that have evolved to optimally regulate tissue-specific functions. Currently, stable circadian rhythms of the expression of clock genes (Bmal1/Per2/Cry1, etc.), hormones, and metabolic genes (Glut4/leptin, etc.) have been demonstrated. Desynchronoses are disorders of the body's biorhythms, where the direction and degree of shift of various indicators of the oscillatory process are disturbed. Desynchronosis can be caused by natural conditions or man-made causes. The disruption of circadian rhythms is a risk factor for the appearance of physiological and behavioral disorders and the development of diseases, including epilepsy, and metabolic and oncological diseases. Evidence suggests that seizure activity in the epilepsy phenotype is associated with circadian dysfunction. Interactions between epilepsy and circadian rhythms may be mediated through melatonin, sleep-wake cycles, and clock genes. The correction of circadian dysfunction can lead to a decrease in seizure activity and vice versa. Currently, attempts are being made to pharmacologically correct desynchronosis and related psycho-emotional disorders, as well as combined somatic pathology. On the other hand, the normalization of the light regimen, the regulation of sleep-wake times, and phototherapy as additions to standard treatment can speed up the recovery of patients with various diseases.
Collapse
Affiliation(s)
- Elena D. Bazhanova
- Laboratory of Comparative Biochemistry of Cell Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; ; Tel.: +7-9119008134
- Laboratory of Morphology and Electron Microscopy, Golikov Research Center of Toxicology, 192019 St. Petersburg, Russia
- Laboratory of Apoptosis Studying, Astrakhan State University, 414040 Astrakhan, Russia
| |
Collapse
|
5
|
Müller HL, Tauber M, Lawson EA, Özyurt J, Bison B, Martinez-Barbera JP, Puget S, Merchant TE, van Santen HM. Hypothalamic syndrome. Nat Rev Dis Primers 2022; 8:24. [PMID: 35449162 DOI: 10.1038/s41572-022-00351-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Hypothalamic syndrome (HS) is a rare disorder caused by disease-related and/or treatment-related injury to the hypothalamus, most commonly associated with rare, non-cancerous parasellar masses, such as craniopharyngiomas, germ cell tumours, gliomas, cysts of Rathke's pouch and Langerhans cell histiocytosis, as well as with genetic neurodevelopmental syndromes, such as Prader-Willi syndrome and septo-optic dysplasia. HS is characterized by intractable weight gain associated with severe morbid obesity, multiple endocrine abnormalities and memory impairment, attention deficit and reduced impulse control as well as increased risk of cardiovascular and metabolic disorders. Currently, there is no cure for this condition but treatments for general obesity are often used in patients with HS, including surgery, medication and counselling. However, these are mostly ineffective and no medications that are specifically approved for the treatment of HS are available. Specific challenges in HS are because the syndrome represents an adverse effect of different diseases, and that diagnostic criteria, aetiology, pathogenesis and management of HS are not completely defined.
Collapse
Affiliation(s)
- Hermann L Müller
- Department of Paediatrics and Paediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany.
| | - Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Hôpital des Enfants, CHU-Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jale Özyurt
- Biological Psychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Juan-Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stephanie Puget
- Service de Neurochirurgie, Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Paris, France
- Service de Neurochirurgie, Hopital Pierre Zobda Quitman, Martinique, France
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hanneke M van Santen
- Department of Paediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| |
Collapse
|