1
|
Missiego-Beltrán J, Olalla-Álvarez EM, González-Brugera A, Beltrán-Velasco AI. Implications of Butyrate Signaling Pathways on the Motor Symptomatology of Parkinson's Disease and Neuroprotective Effects-Therapeutic Approaches: A Systematic Review. Int J Mol Sci 2024; 25:8998. [PMID: 39201684 PMCID: PMC11354563 DOI: 10.3390/ijms25168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder characterized by motor and non-motor symptoms. Emerging evidence suggests that gut microbiota alterations, specifically involving short-chain fatty acids (SCFAs) like butyrate, may influence PD pathogenesis and symptomatology. This Systematic Review aims to synthesize current research on the role of butyrate in modulating motor symptoms and its neuroprotective effects in PD, providing insights into potential therapeutic approaches. A systematic literature search was conducted in April 2024 across databases, including ScienceDirect, Scopus, Wiley, and Web of Science, for studies published between 2000 and 2024. Keywords used were "neuroprotective effects AND butyrate AND (Parkinson disease OR motor symptoms)". Four authors independently screened titles, abstracts, and full texts, applying inclusion criteria focused on studies investigating butyrate regulation and PD motor symptoms. A total of 1377 articles were identified, with 40 selected for full-text review and 14 studies meeting the inclusion criteria. Data extraction was performed on the study population, PD models, methodology, intervention details, and outcomes. Quality assessment using the SYRCLE RoB tool highlighted variability in study quality, with some biases noted in allocation concealment and blinding. Findings indicate that butyrate regulation has a significant impact on improving motor symptoms and offers neuroprotective benefits in PD models. The therapeutic modulation of gut microbiota to enhance butyrate levels presents a promising strategy for PD symptom management.
Collapse
Affiliation(s)
| | | | | | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain; (J.M.-B.); (E.M.O.-Á.); (A.G.-B.)
| |
Collapse
|
2
|
Li G, Huang P, Cui S, He Y, Jiang Q, Li B, Li Y, Xu J, Wang Z, Tan Y, Chen S. Tai Chi improves non-motor symptoms of Parkinson's disease: One-year randomized controlled study with the investigation of mechanisms. Parkinsonism Relat Disord 2024; 120:105978. [PMID: 38244460 DOI: 10.1016/j.parkreldis.2023.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Tai Chi was found to improve motor symptoms in Parkinson's disease (PD). Whether long-term Tai Chi training could improve non-motor symptoms (NMS) and the related mechanisms were unknown. OBJECTIVE To investigate Tai Chi's impact on non-motor symptoms in PD and related mechanisms. METHODS 95 early-stage PD patients were recruited and randomly divided into Tai Chi (N = 32), brisk walking (N = 31), and no-exercise groups (N = 32). All subjects were evaluated at baseline, 6 months, and 12 months within one-year intervention. Non-motor symptoms (including cognition, sleep, autonomic symptoms, anxiety/depression, and quality of life) were investigated by rating scales. fMRI, plasma cytokines and metabolomics, and blood Huntingtin interaction protein 2 (HIP2) mRNA levels were detected to observe changes in brain networks and plasma biomarkers. RESULTS Sixty-six patients completed the study. Non-motor functions assessed by rating scales, e.g. PD cognitive rating scale (PDCRS) and Epworth Sleepiness scale (ESS), were significantly improved in the Tai Chi group than the control group. Besides, Tai Chi had advantages in improving NMS-Quest and ESS than brisk walking. Improved brain function was seen in the somatomotor network, correlating with improved PDCRS (p = 0.003, respectively). Downregulation of eotaxin and upregulation of BDNF demonstrated a positive correlation with improvement of PDCRS and PDCRS-frontal lobe scores (p ≤ 0.037). Improvement of energy and immune-related metabolomics (p ≤ 0.043), and elevation of HIP2 mRNA levels (p = 0.003) were also found associated with the improvement of PDCRS. CONCLUSIONS Tai Chi improved non-motor symptoms in PD, especially in cognition and sleep. Enhanced brain network function, downregulation of inflammation, and enhanced energy metabolism were observed after Tai Chi training.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yachao He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qinying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yuxin Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China; Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
3
|
Wong JK, Lopes JMLJ, Hu W, Wang A, Au KLK, Stiep T, Frey J, Toledo JB, Raike RS, Okun MS, Almeida L. Double blind, nonrandomized crossover study of active recharge biphasic deep brain stimulation for primary dystonia. Parkinsonism Relat Disord 2023; 109:105328. [PMID: 36827951 DOI: 10.1016/j.parkreldis.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is an effective therapy for select patients with primary dystonia. DBS programming for dystonia is often challenging due to variable time to symptomatic improvement or stimulation induced side effects (SISE) such as capsular or optic tract activation which can prolong device optimization. OBJECTIVE To characterize the safety and tolerability of active recharge biphasic DBS (bDBS) in primary dystonia and to compare it to conventional clinical DBS (clinDBS). METHODS Ten subjects with primary dystonia and GPi DBS underwent a single center, double blind, nonrandomized crossover study comparing clinDBS versus bDBS. The testing occurred over two-days. bDBS and clinDBS were administered on separate days and each was activated for 6 h. Rating scales were collected by video recording and scored by four blinded movement disorders trained neurologists. RESULTS The bDBS paradigm was safe and well-tolerated in all ten subjects. There were no persistent SISE reported. The mean change in the Unified Dystonia Rating Scale after 4 h of stimulation was greater in bDBS when compared to clinDBS (-6.5 vs 0.3, p < 0.04). CONCLUSION In this pilot study, we demonstrated that biphasic DBS is a novel stimulation paradigm which can be administered safely. The biphasic waveform revealed a greater immediate improvement. Further studies are needed to determine whether this immediate improvement persists with chronic stimulation or if clinDBS will eventually achieve similar levels of improvement to bDBS over time.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| | - Janine Melo Lobo Jofili Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Anson Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Ka Loong Kelvin Au
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamara Stiep
- Department of Neurology, UCSF Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California San Francisco, CA, United States
| | - Jessica Frey
- Department of Neurology, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States
| | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Frisaldi E, Shaibani A, Trucco M, Milano E, Benedetti F. What is the role of placebo in neurotherapeutics? Expert Rev Neurother 2021; 22:15-25. [PMID: 34845956 DOI: 10.1080/14737175.2022.2012156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The widespread use of the word 'placebo' in the medical literature emphasizes the importance of this phenomenon in modern biomedical sciences. Neuroscientific research over the past thirty years shows that placebo effects are genuine psychobiological events attributable to the overall therapeutic context, and can be robust in both laboratory and clinical settings. AREAS COVERED Here the authors describe the biological mechanisms and the clinical implications of placebo effects with particular emphasis on neurology and psychiatry, for example in pain, movement disorders, depression. In these conditions, a number of endogenous systems have been identified, such as endogenous opioids, endocannabinoids, and dopamine, which contribute to the placebo-induced benefit. EXPERT OPINION Every effort should be made to maximize the placebo effect and reduce its evil twin, the nocebo effect, in medical practice. This does not require the administration of a placebo, but rather the enhancement of the effects of pharmacological and nonpharmacological treatments through a good doctor-patient interaction.
Collapse
Affiliation(s)
- Elisa Frisaldi
- Neuroscience Department, University of Turin Medical School, Turin, Italy
| | - Aziz Shaibani
- Nerve & Muscle Center of Texas, Houston, Texas, USA.,Baylor College of Medicine, Houston, Texas, USA
| | - Marco Trucco
- Division of Physical and Rehabilitation Medicine, San Camillo Medical Center, Turin, Italy
| | - Edoardo Milano
- Division of Physical and Rehabilitation Medicine, San Camillo Medical Center, Turin, Italy
| | - Fabrizio Benedetti
- Neuroscience Department, University of Turin Medical School, Turin, Italy.,Medicine and Physiology of Hypoxia, Plateau Rosà, Switzerland
| |
Collapse
|